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A B S T R A C T

With mHealth apps, data can be recorded in real life, which makes them useful, for example, as an
accompanying tool in treatments. However, such datasets, especially those based on apps with usage on a
voluntary basis, are often affected by fluctuating engagement and by high user dropout rates. This makes it
difficult to exploit the data using machine learning techniques and raises the question of whether users have
stopped using the app. In this extended paper, we present a method to identify phases with varying dropout
rates in a dataset and predict for each. We also present an approach to predict what period of inactivity can be
expected for a user in the current state. We use change point detection to identify the phases, show how to deal
with uneven misaligned time series and predict the user’s phase using time series classification. In addition,
we examine how the evolution of adherence develops in individual clusters of individuals. We evaluated our
method on the data of an mHealth app for tinnitus, and show that our approach is appropriate for the study
of adherence in datasets with uneven, unaligned time series of different lengths and with missing values.
1. Introduction

The option of recording data in real life is a major advantage
of mHealth apps. They are therefore particularly helpful when ac-
companying treatments. Notwithstanding the potential benefits to all
involved, the use of such apps requires the willingness and discipline
of the individuals involved to participate consistently. Data coming
from such sources are often affected by fluctuating engagement and by
high dropout rates. Application of machine learning techniques to such
datasets are therefore confronted with these challenges. In concrete
terms, a number of problems arise which complicate the handling of the
data. First, the high dropout rates that are the subject of the science of
attrition initiated by Eysenbach [1]. Second, the fluctuating engagement
during use. This creates gaps in the data of varying size (missing
data). Third, the sampling of the datasets. There is rarely even spacing
between surveys or an equal number of observations. Engagement with
the app is beneficial for all parties involved, so it is in the app provider’s
best interest to assess whether a gap in the data means abandonment
or whether the person is likely to return. Therefore, we present a
method to identify phases with different dropout rates according to
Eysenbach and make a prediction for each phase. We also present an
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approach to predict what period of inactivity to expect for a user in
the current state. Therefore, we raise the question to what extent it
is possible to identify and predict phases with different dropout rates
in these datasets, as well as to predict the duration of inactivity that
can be expected from a user in a current state. We use Change Point
Detection (CPD) to identify phases, show how to deal with uneven,
misaligned time series, and predict the user’s phase using time series
classification. Beyond that, we learn about clusters of app users based
on certain key characteristics and observe their evolution in the context
of the identified phases. We evaluated our method on data from an
mHealth app for tinnitus and show that our approach is suitable for
studying adherence in datasets with uneven, unaligned time series of
different lengths and with missing values. The scope of the paper refers
to the presentation of a possible workflow and the demonstration of the
application on a real use case. The focus is on the methods and less on
the insights gained from the data set.

The paper is organized as follows: Section 2 presents the related
works; Section 3 encompasses the methods used to solve the prob-
lems and Section 4 describes the material with which we tested our
vailable online 2 May 2023
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Fig. 1. The three types of attrition curve identified in [1], here plotted as prototypical curves.
method and shows the results obtained. Finally, Section 5, draws the
conclusions and provides directions for future work.

2. Related work

Related to our approach is research in the science of attrition, ad-
vances on adherence/compliance modeling and monitoring as well as
investigations in dealing with time series with gaps. Engagement in the
use of self-monitoring apps is often referred to as adherence or compli-
ance. The WHO has summarized adherence as: ‘‘the extent to which
a person’s behavior [...] corresponds with agreed recommendations
[...]’’ [2]. They differentiate between adherence and compliance by
the agreement of the patient to the recommendations (adherence) [2].
In our study, we investigate ‘adherence’ in the context of interaction
with an mHealth app, and define as ‘dropouts’ the persons that give
up and stop future interactions. Then, we investigate to what extent
Eysenbach’s law of attrition [1] for survey data [3,4] and for longitu-
dinal experimental data [1] can also be applied on our longitudinal,
observational data.

In [1], Eysenbach investigated how the percentage of study partic-
ipants still engaged in a (medical) study changes from the beginning
to the end. He collected data from several studies, and he found that
attrition in some studies follows a sigmoid-shaped curve characterized
by an initial plateau of high participation, while attrition in other
studies follows more of an ’L-shaped curve’; logarithmic-shaped curves
have also been identified. These three types of curve are plotted in
Fig. 1 for easier juxtaposition. These attrition curves though, were
plotted for studies where a participant who gives up does not come
back. Eysenbach mainly describes 3 phases [1], namely the curiosity
plateau (Phase I) as the initial phase where the user are interested in
exploring a new technology, followed by the attrition phase (Phase II)
where the users start to reject the usage and finally, the stable use phase
(Phase III) where only the ‘hardcore users’ remain, which will continue
to use the application for a long time [1].

Cismondi et al. investigate methods on medical data to deal with
the problem and propose alignment methods such as gridding and
templating [5]. However, the principle cannot be applied to the data of
this paper, since the time series of a user are not collected separately
but by the same questionnaire and therefore already have the same
time stamp. Since the generation of the time series of the individual
users differs substantially in some cases, the principle can only be
applied here to a limited extent. We proposed a model of adherence
based on such data in our previous work [6], but we did not attempt
to predict adherence specifically. Such predictions can be found for
specific applications. For example, Williams-Kerver et al. predicted
adherence in eating disorder based on data with gaps, but focused
on person-level characteristics, such as gender, rather than the data
records themselves [7]. We presented in [8] a recommender method
based on a matrix factorization approach also on longitudinal, observa-
tional data to predict time periods without data to be expected based on
uninterrupted sequences of input data right before them. This is another
more complex approach than the 1-Nearest Neighbor classification
presented in this paper. The advantage of the latter approach is its well
acknowledged performance [9] and the comparatively easier applica-
bility. Our paper [10] also deals with the predictability of adherence.
2

It presents four methods: a shapelet-based predictor, a dictionary-based
predictor, one based on matrix profiles, and a windows-based approach.
The goal is to predict, with a given input of data for a user-selected
point in time in the future, whether a person is adherent at that moment
or not. However, the modeling of adherence and the information used
with it differed from the approach used in this paper. For example,
in [10] a general adherence level is introduced, which, for example,
takes short-term non-adherence less into account if the person was
previously adherent for a long time than for very fluctuating persons.

Furthermore, this work must be distinguished not only by the data
used (survey data [3,4] or longitudinal experimental data [1] vs. lon-
gitudinal observational data) but also by the source or intention of the
data source. For example, the retrieval of health status questionnaires
from voluntarily used self-monitoring apps differs from that of, e.g., an
app included in a randomized controlled trial (RCT), for which there
may be usage protocols and thus other commitment relationships of
the users (e.g., in [11]). This also applies to other apps that, for exam-
ple, monitor the intake of medication or the adherence to a therapy
(e.g., [12]) and thus also have other adherence requirements, or to
fitness apps (e.g., [13]), which in turn have other adherence barriers
due to increased requirements (effort), to give just two examples.

3. Materials and methods

In this section, the dataset for the evaluation is presented at the
beginning. Subsequently, the approach is described and its most im-
portant steps are addressed in more detail in separate subsections.

3.1. Dataset

The evaluation is performed on a mHealth dataset of the Track-
YourTinnitus (TYT) [14] self-monitoring app, dedicated to research
on tinnitus and to help users understand their manifestation of the
disorder. Tinnitus is a complex chronic disorder that has no uniform
way of manifestation and generation [15]. The initial dataset contains
3177 users with a gender distribution of 1028 females, 2097 males
and 52 users with no specified gender. The observational period is
from 2014-04-10 till 2022-01-17. The mean age is 45.50 years with
a standard deviation (STD) of 13.20. The mean age of tinnitus onset is
36.02 years (STD:14.94). When the app randomly sends a request, the
users should answer 8 questions if possible. Each of these 8 questions
(c.f. [6] Table 1) will form separate time series. How often (or if at
all) each individual user adds data points to the time series per day
is up to them and cannot be generalized. Also, whether they answer
one, several, or all questions in a session. In order to demonstrate our
approach, we will focus in this paper the question ‘‘How stressful is
the tinnitus right now?’’ (‘‘distress’’), but it would be applicable on the
other questions as well.

3.2. Modeling of the time series of the users

The starting point are the time series generated by the user. A time
series consists of the transmitted answers (range [0, 1]) to a question.
The question can be asked randomly 1:n times per day (by user choice)
and can also be refused by the user. In this work we refer to a single
question and thus to uni-variate time series.
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Fig. 2. Big Picture. (a) Attrition curve, (b) Phases of attrition, (c) Predicting the phases, (d) A time series represented as sequences (symbolized example), (e) Sequences with
labeled gaps, (f) Predicting the return.
3.3. Modeling three phases in the time series of the users

The first step is to identify the phases with varying dropout rates
(c.f. Fig. 2(a)), since according to Eysenbach these represent specific
stages of interaction. All three phases are to be modeled, but we also
check if indeed all phases are observable or if one phase has no data.
Fig. 2(b) symbolizes the phases, which are snapshots and can change
over time. Determining them in an automated manner might help to
monitor the developments of the dataset. We apply CPD methods to
determine the change in dropout rates and use them to determine the
phases (c.f. transition Fig. 2(a) to (b)).

Using this information, we can now try to predict whether a user
will reach the next phase (from Phase I to II and from I+II to Phase
III) as symbolized in Fig. 2(c). A prediction from Phase I to III does not
seem reasonable, as the transition from Phase I to Phase II is already
characterized by a high dropout rate. Therefore the information in II
may be crucial in predicting III.

Individuals in Phase III are considered stable in their continued use,
but their usage patterns may fluctuate. Fig. 2(d) shows an example
of a single user’s time series consisting of 7 sequences (blue) with
responses and 6 gaps (white). Therefore, the next step is to predict
when individuals most likely will return after a break. The basis here
is no longer all data before the gap in question, but only the sequence
between the last gap and the ones to be predicted. Thus, the approach
respects the high variability and the sparsity problem. Each contiguous
sequence of data (at least two consecutive days) is assigned the value
of the gap until the next entry, providing evidence of the return. The
duration of a gap is counted in days. Fig. 2(e) symbolizes these gaps
between the sequences as orange sections and the numbers above them
represent the number of days without data. This cannot apply to a user’s
last sequence, which hides the information if the user will contribute
again. Possible reasons could be a dropout or the database has reached
its cut-off date, to name just two. Sequences and gaps will have a high
variability in length. To facilitate classification, the gaps, symbolized
in Fig. 2(e), can now be grouped together (binning) according to their
size in order to form categories. Each category is intended to represent
an interval of absence in which similar users have returned. The mean
of the interval (in days) corresponds to the expected value of the class
and the minimum and maximum values indicate a kind of uncertainty
range. Fig. 2(f) represents the classification of these target classes by
inferring the duration of the gaps from the sequence, represented as
arrows from one sequence to the beginning of the next.

3.4. Identifying phases of attrition

A potential target for CPD are Eysenbach’s [1] proposed attrition
curves. In the self-monitoring context a user can return even after a
very long time. As a consequence, the true number of enrolled users
must be assumed as unknown. Therefore, we created our curve by the
3

number of contributing users over time. Where ‘time’ is not measured
in dates, moreover in subjective days of app usage. The first day
(day 1) is the day of the first submitted record. From that day on,
the days are counted as usual from 0:00 a.m. on. On each of these
days of usage some users might contribute and some might pause in
varying combinations. But some users might start at some point to stop
their contribution. As a result the number of contributing persons will
decrease over the time of aligned days. In order to make this approach
applicable to multiple sample of users and applications we decided to
search for all 3 phases. Based on the underlying data, it is possible that
the initial phase comprises only one day, namely day 1, and the curve
thus corresponds more to an L-shaped attrition curve.

We applied 3 change point detection methods: Linearly penalized seg-
mentation (PELT) [16], Dynamic programming (Dynp) [16] and Bottom-
up segmentation (BottomUp) [16–18] from the python package ‘rup-
ture’ [16]. To select the best method for the data, the selection must
be made initially after visual inspection.

3.5. Predicting attrition for each user

For predicting whether a user will contribute in the next phase,
the algorithm XGBoost from the Python package ‘XGBoost’ [19] was
selected. It iteratively combines different models in the eponymous
boosting procedure to reduce the errors of those already implemented.
The algorithm was chosen for its broad applicability and excellent per-
formance. Since this is a binary classification, a 10-fold cross-validation
(CV) with Accuracy (Acc) was chosen to evaluate the results.

To clarify, the prediction target is the adherence class, which refers to
the information whether a user is active in a found phase. The adherence
in the variable refers to whether the user has answered the question of
the app on the corresponding day or not. The adherence in the variable
is thus decisive for the assignment of the adherence label in the phases
(respectively with the class ‘yes’ and ‘no’). If a user is not active in Phase
II, but is active in later phases, the person is labeled as not adherent in
Phase II, but as adherent in Phase III.

3.6. Learning clusters of users

After determining the phases with varying dropout rates and making
predictions for the totality of users, we learn clusters of users on
selected key characteristics. We contrast how the percentage distribu-
tion of clusters change in Phase II & III compared to Phase I under
the condition that users are adherent or not. This approach makes it
possible to trace the evolution of clusters with a focus on adherence
and to identify and describe groups of users that stand out in their usage
behavior.

To explore the possibilities of the clusters, we use different features
that can characterize a tinnitus patient. For this purpose, the TYT
dataset provides us with the Mini Tinnitus Questionnaire (Mini-TQ) [20]
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and the Tinnitus Sample Case History Questionnaire (TSCHQ) [21]. The
Mini-TQ measures tinnitus-related psychological distress [20]. This
questionnaire is an abbreviated form of the Tinnitus Questionnaire
(TQ) [22,23] which, among others, is considered an ‘‘essential part
of patient assessment’’ [21] and is valued as an ‘‘outcome measure-
ment’’ [21]. In [20] it is shown that the reduced version to 12 questions
and the sum score calculated from these are comparable to the full
version and ‘‘no recognizable psychometric disadvantages’’ [20] exist
to the TQ. Therefore, we use the Mini-TQ sum score as a feature for
clustering.

The other features are selected from TSCHQ from the areas ‘‘Back-
ground’’, ‘‘Tinnitus history’’, ‘‘Modifying influences’’ and ‘‘Related con-
ditions’’ [21]. Case history questionnaires provide the experts with
information on descriptive characteristics of the patients’ tinnitus as
well as the related conditions [21].

The selected items of the TSCHQ are [24]:

Modifying influences
Background • Influence by stress

(worsen/reduces/no effect)
• Age at visit (years)* Related conditions• Gender (female/male)*

• Hearing impairment
(no/yes)*

Tinnitus history • Noise intolerance
(never/rarely/
sometime/usually/always)

• Age at tinnitus onset (years)
(author remark: modified from
‘time in month’)

• Headache (no/yes)*
• Onset related events (change

in hearing/
stress/loud blast of sound/head
trauma/whiplash/others)

• Temporomandibular joint
complaints (no/yes)

• Neck pain (no/yes)
• Subjective tinnitus loudness

(0–100)*
• Other pain (no/yes)

• Psychiatric problems
(no/yes)

The variables were chosen to be drawn from all areas of the TSCHQ
and to be among those considered ‘‘essential’’ [21] (marked with *) as
well as ‘‘highly desirable’’ [21] (the rest) information. Other combina-
tions and numbers of items are also possible. In the proposed selection
it was important that the items are understandable for the study of the
clusters, are composed of both numerical and categorical variables and,
in addition, present a particular adherence behavior in the concrete
evaluation dataset.

Clustering was performed using the HDBSCAN algorithm [25,26].
The approach has the advantage of using only one parameter (the
minimum size of the clusters), which facilitates tuning. At the same
time, the density-based approach offers the possibility to ignore records
that do not fit into a certain cluster as ‘‘noise’’. Especially in very
heterogeneous datasets, clusters can benefit from this property.

The distance between two instances was calculated using ‘‘Jaccard’’
distance. Since questionnaires must expect that many questions may
not be answered, a method is needed that can also handle these
missing values. This is different from e.g. Euclidean distance, where
these variables have to be either ignored or changed, which can lead
to distortions, e.g. when missing values are counted as ‘−1’ in the
distance calculation. Furthermore, the information whether a variable
was answered or not is itself already information that can be worked
with.

A challenge in tuning the parameter of HDBSCAN is that a ground
truth is missing and that not every instance is assigned to a cluster. This
4

complicates the application of traditional methods for optimization.
In the present use case, however, it is already interesting to show
that stable clusters can be found in the context and the corresponding
adherence patterns.

The evaluation of a selection of the clusters is done manually in this
paper to explore and better assess the possibilities of clustering in the
process.

3.7. Tuning the gap size for prediction

To create the necessary preconditions for the classification of the
sequences, restrictions must be made. User with just a single day and
therefore, with just a single day sequence must be excluded. This is
also true for users with multiple days but no second sequence, since
the return after the gap cannot be verified. If a uni-variate sequence in
a multivariate sequence has a missing value on one day, this sequence
must be removed (although imputation can be explored) Finally, gaps
of a certain length might not worth considering. Depending on the use
case of the app, such sequences are not very informative, because the
user might try a restart or test a new version of the app after this very
long pause. They are sequences with return, but are basically ‘hidden
dropouts’. We considered three strategies for data binning, namely (a)
building equisized intervals, (b) building intervals on frequency and
(c) identifying ‘natural’ groups with the Fischer–Jenks algorithm [27]
(implementation: jenkspy package). Each algorithm delivers a different
number of bins of different sizes, which must be categorized manually.

The prediction of the class of a sequence is done using a 1-NN clas-
sifier with Dynamic Time Warping (DTW), one of the best performing
approaches according to [9]. Since the binning will lead to multiple
classes with uneven distribution, a stratified 10-fold CV is selected for
evaluation with Acc.

4. Results and discussion

The following sections describe the results for identifying the attri-
tion phases, followed by the predictions of the phases for each user,
and some details on tuning the gap size parameter. We close with a
discussion of the results.

4.1. Identifying phases of attrition

Fig. 3 depicts the attrition curves, computed as described in Sec-
tion 3.4. We see that on day 1, all 3177 users were active. On day 2,
there were 1284 (40.41%), on day 3 1011 (31.82%) and on day 14 only
481 (15.14%) users. We also see that the curve flattens after day 11 and
there is practically no change after day 12. Therefore, we focus on the
first 12 + 2 = 14 days, i.e. we take two more days into account for our
attrition study. Although it would be technically possible to consider
more days, we believe that the caregiver or study coordinator should
focus on early signals of attrition at the beginning of the study; this is
an additional motivation for considering only the first two days after
the flattening.

Visual inspection of the graph and the rapid decline in numbers
suggest an L-shaped progression rather than the sigmoidal progression
shown in [1]. When running the 3 CPD algorithms (PELT, BottomUp,
Dynp) on the data shown in Fig. 3, quite different results were obtained.
All 3 algorithms were expected to find 2 change points (or 3 phases)
in the first 14 days after visual inspection of the curve, but were set
to freely find the change points. PELT detected only a single change
point on day 2, while BottomUp found 2 points. The first on day 5 and
the second on day 14. Dynp detected the first change point on day 2,
just like PELT. The second point on day 5, which is the same result as
BottomUp. And another one on day 14. In experiments with shorter or
longer time series, the algorithms BottomUp and Dynp selected day 14,
i.e. the last day, so this last change point should be discarded. Hence,

PELT, BottomUp and Dynp, taken together, identified change points
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Fig. 3. The figure illustrates the number of users contributing data on Day 1 through
Day 14. Day 1 is the first day of use of the app for each individual user. Not every
user who submitted data on Day 1 is present in all other days.

Fig. 4. This figure shows the result of the dynamic programming search method for
change points (Dynp). The color change symbolizes a different area marked by the
calculated change points on day 2 and day 5. Phase I (red) - II (yellow) - III (blue).
(For interpretation of the references to color in this figure legend, the reader is referred
to the web version of this article.)

Fig. 5. The figure shows the number of clusters for different settings of the minimum
cluster size (cluster min size) for the HDBSCAN algorithm. The number of clusters
stabilizes at a minimum size of 52 instances to 7 clusters + noise.

at day 2 (two of the three algorithms) and day 5 (two algorithms).
These two changepoints indicate that there are indeed three phases, in
agreement with the law of attrition. However, the change from Phase II
to Phase III (at day 5) is not so prominent, as can also be seen on Fig. 4.
5

Fig. 6. This figure illustrates the percentage distribution of clusters and the proportion
of instances considered ‘‘noise’’ for HDBSCAN with a minimum cluster size of 52
instances.

In that figure, the red area (leftmost) refers to Phase I, the yellow area
(middle) to Phase II and the blue area to Phase III.

4.2. Predicting attrition for each user

Since Dynp found both changepoints in the time series, we used it
to assign labels to users. Anyone who contributed on day 2 or later
was assigned a Yes class for Phase II, and everyone else was assigned
a No class. A similar procedure was performed with the threshold for
Phase III on day 5. As input for the classifiers, we chose the time series
‘distress’ because this variable reflects best how the users feel about
their tinnitus [15] and because it is likely to be associated to attrition.
We excluded 99 users who did not enter distress values on day 1,
whereupon we retained 3078 users with an entry in day 1 (i.e. before
the change point at day 2). These users we used for prediction. The
classes are slightly imbalanced, with 𝑛 = 1811 (58.84%) for Yes and
𝑛 = 1267 (41.16%) for No. Since the users have substantial differences
in the data contributed on the days and also at very different times, the
median per day was chosen to be representative, so that each user has
only one value per day. So in this specific case, the algorithm had to
try to make a prediction with one value per 3078 users.

One value per day, making the classification task very difficult. We
used XGBoost [19] with 10-fold cross-validation and achieved a mean
accuracy of 54.52% (SDT:3.68%). The low accuracy reflects the diffi-
culty of the task. For the prediction of Phase III, a much higher quality
was achieved, namely 76.93% (SDT:1.93%). The class distribution is
Yes: 1435 (45.17%) and No: 1742 (54.83%).

4.3. Learning clusters of users

After the predictions of the adherence classes, the clusters are now
in focus. At the beginning, it is examined to what extent the proposed
variables are filled in. The adherence per variable is: age: 96.85%,
gender: 99.36%, onset age: 95.37%, Mini-TQ sum score 100.00%, ini-
tial onset: 98.11%, loudness: 82.18%, effect of stress: 74.28%, hearing
impairment: 73.62%, noise induced pain: 73.62%, headaches: 73.62%,
vertigo/dizziness: 73.59%, temporomandibular disorder: 73.62%, neck
pain: 73.62%, other pain: 73.53% and psychiatric problems: 73.59%.
The selected variables of TSCHQ’s domains ‘‘modifying influences’’ and
‘‘related conditions’’ were not answered by more than a quarter of the
users, while the participation in the other variables was high, with the
exception of loudness and the effect of stress.

Since the HDBSCAN algorithm has just one parameter, the minimum
cluster size, different settings were tested until a stable cluster size
was found. The number of clusters stabilizes at a minimum size of 52
instances to 7 clusters + noise as illustrated in Fig. 5. The resulting
cluster distribution is shown in Fig. 6 as a percentage as well as the
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Table 1
This table represents the distribution of the clusters in the different adherence classes with respect to the phases. The total count of participants (#), the percentage (%) per class
and phase and the tendency (T) of the cluster development given the percentage of the previous phase. The tendency is shown as an arrow. In Phase II the previous phase is
Phase I (𝑇𝑝1) and in Phase III it is the tendency from Phase II (𝑇𝑝2).

Cluster All Adherent Non-Adherent

Phase I Phase II Phase III Phase II Phase III

# (of 3177) % # (of 1848) % 𝑇𝑝1 # (of 1435) % 𝑇𝑝2 # (of 1329) % 𝑇𝑝1 # (of 1742) % 𝑇𝑝2
Cluster 1 241 7.59 123 6.66 ↘ 96 6.69 → 118 8.88 ↗ 145 8.32 ↘

Cluster 2 545 17.15 358 19.37 ↗ 275 19.16 ↘ 187 14.07 ↘ 270 15.50 ↗

Cluster 3 443 13.94 220 11.90 ↘ 179 12.47 ↗ 223 16.78 ↗ 264 15.15 ↘

Cluster 4 1044 32.86 653 35.34 ↗ 511 35.61 ↗ 391 29.42 ↘ 533 30.60 ↗

Cluster 5 147 4.63 84 4.55 ↘ 64 4.46 ↘ 63 4.74 ↗ 83 4.76 →

Cluster 6 140 4.41 64 3.46 ↘ 48 3.34 ↘ 76 5.72 ↗ 92 5.28 ↘

Cluster 7 425 13.38 246 13.31 → 180 12.54 ↘ 179 13.47 ↗ 245 14.06 ↗

Noise 192 6.04 100 5.41 ↘ 82 5.71 ↗ 92 6.92 ↗ 110 6.31 ↘
Fig. 7. The figure shows the cluster distribution in percent for all users who were
adherents in Phase II. The plot corresponds to the values in Table 1 in the columns
‘‘Adherent - Phase II’’.

Fig. 8. The figure shows the cluster distribution in percent for all users who were
adherents in Phase III. The plot corresponds to the values in Table 1 in the columns
‘‘Adherent - Phase III’’.

fraction of instances labeled as ‘‘noise’’. Table 1 contains the same
information for the Phase I columns plus the total number of cluster
members. The amount of people marked as noise is only 6.04%.

Table 1 also distinguishes between a behavior that is adherent and
one that is not. In these behavior phases, the composition of users by
cluster is examined and the tendency of evolution of the percentage
distribution compared to the previous phase is symbolized by arrows.
Thus, the trend per cluster can be compared for both groups of users
6

Fig. 9. The figure shows the cluster distribution in percent for all users who were non-
adherents in Phase II. The plot corresponds to the values in Table 1 in the columns
‘‘Non-Adherent - Phase II’’.

Fig. 10. The figure shows the cluster distribution in percent for all users who were
non-adherents in Phase III. The plot corresponds to the values in Table 1 in the columns
‘‘Non-Adherent - Phase III’’.

(adherent vs. non-adherent). A user who is adherent in Phase II but not
in Phase III changes the group to non-adherent, but still counts to the
same cluster. Figs. 7 & 8 illustrate the distribution for Phase II & III for
adherent users. Figs. 9 & 10 do the same for non-adherent persons.

The ‘‘noise’’ cluster in Phase II almost splits into two halves in terms
of absolute numbers (100 vs. 92). In percentage terms, the adherent
group has less noise and the non-adherent group more. In Phase III,
it increases again for the first group and decreases for the second.
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Nevertheless, the final percentage for the adherence group is 5.71%,
which is below the level of Phase I, and 6.31% for the non-Adherent
group, which is above.

Cluster 4 is the largest cluster with 1044 members. Slightly more
than one-third of the members are not adherent in Phase II. The
proportion of the adherent group increases slightly with the phases and
is above the level in Phase I. Among the second group, it first increases
and then decreases, but always remains below the level in Phase I. But
in both cases it remains the largest cluster.

Cluster 5 & 6 are the smallest clusters. Both clusters are character-
ized by the fact that their proportion in the adherent group continues
to decrease. In the non-adherent group, the proportion first increases
for both. However, cluster 5 then remains relatively stable, while the
level of cluster 6 decreases.

Cluster 7 remains relatively stable in the first group in Phase II
and then decreases slightly. In the non-adherent group, however, the
percentage rises slightly above the initial level from phase to phase.

Using one of the clusters and the noise group as an example, the
manual analysis of the clusters will now be demonstrated. Cluster 4 is
the first example as the cluster with the most users. It is the largest
cluster by far (32.86% of all users). The next largest is cluster 2 with
545 people. It is also worth noting that the algorithm assigned only
male users to this cluster. In addition, the people are the oldest, with a
mean age of 48.75 years (STD: ±13.13 years) compared to the average
of the other clusters (without noise), with a mean age of 43.74 years
(mean STD: ±12.82 years). The age of onset is slightly above the mean
of the other clusters, with a mean onset at 37.58 years (STD: ±14.53
ears) to an average of 36.00 ± 14.15 years. The Mini-TQ sum score is
lightly below the average of the other clusters, with 13.84 ± 5.87 to
n average of 14.09 ± 5.72. In the Phase II adherence group, the mean
ge is noticeably higher at 50.05±12.54 compared to the average of the
ther clusters (45.09 ± 13.02), and the age at onset is slightly higher at
9.27 ± 13.95 to 37.04 ± 14.72. The Mini-TQ sum score comparable with
3.90 ± 5.87 to 13.98 ± 5.63. In Phase III, the mean age is comparable
o Phase II with 50.80 ± 12.21 (average other clusters: 45.47 ± 13.05).

The onset age also keeps its level 39.52 ± 13.58 (average other clusters:
37.10±14.51). And so does the Mini-TQ sum score at 13.74±5.89 (average
other clusters: 13.91±5.54). In the non-adherence Phase II group, mean
ge is lower in comparison to Phase I with 46.52 ± 13.81 years, but

the average of the other clusters: 42.15 ± 12.45 is noticeably lower,
also age at onset is lower with 34.67 ± 15.06 (average other clusters:
34.71 ± 13.43) and Mini-TQ sum score at 13.73 ± 5.88 (average other
clusters: 14.23±5.81) shows no major differences from Phase I. In Phase
III, the mean age is close to Phase II with 46.76 ± 13.68 (average other
clusters: 42.51 ± 12.55). The onset age also is close to its former level
35.69 ± 15.18 (average other clusters: 35.19 ± 13.90). And so does the
Mini-TQ sum score at 13.93±5.86 (average other clusters: 14.21±5.85).
So, in Phase II the adherent group has a slightly higher age and age
on onset, but a similar Mini-TQ sum score and the non-adherent group
has in average a lower age and age on onset and also a similar Mini-
TQ sum score. In Phase III, the values did not change significantly in
either group. The next focus is on the noise group, i.e., users who are
not assigned to a cluster.

Comparing some variables, we find that the ‘‘noise’’ instances are
younger by comparison, with a mean age of 39 years (STD: ±12.04
ears) compared to the average of the other clusters, with a mean age
f 44.60 years (mean STD: ±12.86 years). This is also true for the age of
nset with 23.45 ± 19.00 years to an average of 36.23 ± 14.21 years. The
ini-TQ sum score is also below the average of the other clusters with
.19±8.16 to an average of 14.05±5.74. Compared to the distribution in
he whole dataset (m: 60.01%/f: 32.36%/u: 1.64%), the noise instances
lso show a different gender distribution: (m: 31.77%/f: 49.47%/u:
8.75%). In the Phase II adherence group, the mean age is higher at
1.13 ± 13.10, and the age at onset is also higher at 26.11 ± 20.34. The
ini-TQ sum score is more stable (8.86±8.79). The gender distribution
7

s m: 65.04%/f: 33.06%/u: 1.89% for all and for the noise group it is:
: 29.00%/f: 46.00%/u: 25.00%. In Phase III, the mean age decreases
o 40.62 ± 13.29. The entry age also drops to 24.93 ± 21.03. And so does

the Mini-TQ sum score at 8.27 ± 8.76. The gender distribution is m:
65.37%/f: 32.68%/u: 1.95% for all and for the noise group it is: m:
31.70%/f: 41.46%/u: 26.83%. In the non-adherence Phase II group,
mean age is lower at 38.66 ± 10.94, also age at onset at 20.89 ± 17.38
and Mini-TQ sum score at 7.45 ± 7.40. The gender distribution is m:
67.44%/f: 31.28%/u:1.28% for all and for the noise group it is: m:
34.78%/ f: 53.26%/u: 11.96%. In Phase III, mean age increases again
to 39.36±11.25, age at onset to 22.46±17.57, and Mini-TQ sum score to
8.13 ± 7.72. The gender distribution is m: 66.53%/f: 32.09%/u: 1.38%
for all and for the noise group it is: m: 31.81%/f: 55.45%/u: 12.72%.

In the noise group, the proportion of females is significantly higher
than in the overall group in Phase I. In Phase II & III, this dominance
is maintained, but there are no strong deviations between the two
adherence groups. The adherence group is minimally older and has
a minimally higher age of onset. In addition, the Mini-TQ sum score
tends to be slightly higher than in the non-adherence group, especially
in Phase II.

4.4. Tuning the gap size for prediction

Our dataset contains many sequences with small gaps, but some
sequences have gaps of more than 2000 days. We filtered out sequences
with a longer gap than one month (30 days). This reduced the dataset
size considerably, since only 10 users had gaps of 15 days, and larger
gaps were even more rare. Hence, we limited the maximum gap size to
30 and invoked the three binning strategies described in Section 3.7, to
build 5 groups of increasing gap size (number of days). The results are
on Table 2. There, we sorted the 5 groups by size, with the group of
the smallest gaps coming first (c.f. leftmost column). As can be seen in
the table, the frequency-based strategy has built only three groups, the
3rd of which contains gaps of very different sizes, from 4 to 30 days.
The other two strategies placed in each group sequences of similar gap
sizes, whereupon the third (rightmost) strategy achieved a somehow
smoother distribution of sequences among groups.

Applying 1-NN algorithm to the sequences in order to predict the
gaps (based on Fischer–Jenks binning method) led to a mean accuracy
of 61% for stratified 10-fold CV. The minority classes E & D performed
worse as well as label C. In each fold, the Precision and Recall values
are around 15% for label B and 77% for label A, which corresponds to
their class distribution (c.f. Table 3 for the detailed evaluation metrics).

The 1-NN classifier with DTW was chosen because it is the gold
standard in performance according to [9].

4.5. Discussion

Only Dynp identified the stages of attrition, according to Eysen-
bach’s [1] description. The L-shape of the curve, is due to the nature of
the app. While Eysenbach and Hochheimer et al. [4] work with trial or
survey data, the users here are in a voluntary exploration situation. The
app is only used over a longer period of time if the relationship fits [1].
According to [4] ‘‘sensitive user-specified thresholds’’ are able to cor-
rectly identify dropout phases. We could demonstrate an approach with
Change point Detection methods that requires less manual effort. This
allows the identification of phases with different dropout rates to be
integrated into a more autonomous workflow.

The prediction of Phase III from I+II outperforms the prediction of
Phase II from I, Since this prediction is close to the class distribution.
However, the result is explained by the available input. While the first
prediction can only use a single value per user, the second prediction
can use 4. The problems of the algorithm, although it can be considered
‘state-of-the-art’, can be attributed to the large number of users, with
subjective manifestations of tinnitus. Moreover, the variable has a very
similar value (Mean: 0.357, SDT: 0.27), which further complicates its

separation. By changing the setting, e.g. in a clinical study, the results
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Table 2
Gap bins derived by each of the binning strategies on a total of 3749 sequences: strategy of equisized intervals (left column), frequency-based strategy (middle column) and the
Fischer–Jenks algorithm that builds natural groups (rightmost column): each entry contains an interval size and the number of intervals of this size, as found by the algorithm.
The leftmost column contains the group ID.

GroupID Equisized intervals Frequency-based Fischer–Jenks

Interval Sequences Interval Sequences Interval Sequences

A: smallest gaps (1.999–7.6] 3543 (1.9–3.0] 2903 (1.999–3.0] 2903
B: small gaps (7.6–13.2] 138 (3.0–4.0] 307 (3.0–6.0] 580
C: larger gaps (13.2–18.8] 40 (4.0–30.0] 539 (6.0–11.0] 61
D: large gaps (18.8–24.4] 15 (11.0–18.0] 77
E: very large gaps (24.4–30.0] 13 (18.0–30.0] 28
Table 3
This table shows the precision, recall, and F1-score as evaluation metrics for each class and each fold of the 10-fold stratified cross-validation as well as the averages for the 1-NN
classifier (Pre—Precision, Rec—Recall, F1—F1-score, Sup—Support, Avg—Average & Acc—Accuracy)

Class A Class B Class C Class D Class E

Fold Pre Rec F1 Sup Pre Rec F1 Sup Pre Rec F1 Sup Pre Rec F1 Sup Pre Rec F1 Sup Acc

1 0.79 0.80 0.80 291 0.21 0.22 0.22 58 0.08 0.06 0.07 16 0.00 0.00 0.00 7 0.00 0.00 0.00 3 0.66
2 0.78 0.81 0.80 291 0.22 0.19 0.20 58 0.00 0.00 0.00 16 0.00 0.00 0.00 7 0.00 0.00 0.00 3 0.66
3 0.79 0.79 0.79 291 0.16 0.17 0.17 58 0.00 0.00 0.00 16 0.00 0.00 0.00 8 0.00 0.00 0.00 2 0.64
4 0.77 0.73 0.75 290 0.17 0.22 0.19 58 0.00 0.00 0.00 17 0.00 0.00 0.00 8 0.00 0.00 0.00 2 0.60
5 0.77 0.74 0.75 290 0.14 0.17 0.16 58 0.14 0.12 0.13 16 0.00 0.00 0.00 8 0.00 0.00 0.00 3 0.60
6 0.77 0.72 0.75 290 0.13 0.16 0.14 58 0.00 0.00 0.00 16 0.08 0.12 0.10 8 0.00 0.00 0.00 3 0.59
7 0.79 0.73 0.76 290 0.17 0.19 0.18 58 0.00 0.00 0.00 16 0.08 0.12 0.10 8 0.00 0.00 0.00 3 0.60
8 0.78 0.74 0.76 290 0.18 0.21 0.19 58 0.04 0.06 0.05 16 0.08 0.12 0.10 8 0.00 0.00 0.00 3 0.61
9 0.80 0.77 0.79 290 0.20 0.22 0.21 58 0.10 0.12 0.11 16 0.00 0.00 0.00 8 0.00 0.00 0.00 3 0.63
10 0.77 0.71 0.74 290 0.10 0.12 0.11 58 0.00 0.00 0.00 16 0.00 0.00 0.00 7 0.00 0.00 0.00 3 0.57

Avg 0.78 0.75 0.77 290.30 0.17 0.19 0.18 58.00 0.04 0.04 0.04 16.10 0.02 0.04 0.03 7.70 0.00 0.00 0.00 2.80 0.62
might be better, because the phases might be more sigmoid-shaped.
Other studies may refer to direct prediction of adherence overall. For
example, in [12], adherence to treatment is predicted with a minimum
input of 90 days, further increasing in 30-day blocks [12]. Or in the
work of [13], fitness program adherence is predicted. But again with
an input of 90 days and a non-adherence definition of more than one
month without training activity [13]. So the presented method has to
cope with much less input, at least in the example chosen here. In ad-
dition, it offers the possibility to classify users earlier according to their
condition, and consequently, it would be possible to react accordingly.
As an example, long-term users may have different demands on an app
than new users who first have to be won over for an app or program.

For the breakdown into clusters, it can be stated that the HDBSCAN
algorithm was able to find stable clusters. In addition, it could be shown
that there are different tendencies in the adherence behavior in the
clusters and that the differences in the composition of the clusters are
recognizable. Thus, it seems possible to predict the development of
users by cluster membership. The results point in a positive direction
and the approach should be pursued. In addition, the approach of
using the Jaccard distance seems to be helpful in case of high non-
adherence. The manual evaluation, on the other hand, is laborious and
a more appropriate measure for cluster evaluation before analysis also
seems desirable. There is potential for improvement in this direction.
In summary, the clustering step adds value for the users of the method
by identifying groups of users that, similar to the approach in the phase
model, provide early indications of possible behavior of new users that
can then be acted upon in terms of the app providers. Clustering is
also applied in [13] to improve workflow results. However, their work
uses K-Means, which requires the number of clusters to be defined in
advance and also does not take noise in the data into account. Both of
these make the application unsuitable in the present methodology. In
addition, they use clustering to better train their regression models and
not to identify user groups by their characteristics and to examine their
adherence behavior over time in order to gain information from them
independently.

Learning the gap labels by binning suffers from the skew in the
gap size. Nevertheless, the Fischer–Jenks algorithm performed better
than the other ones in creating reasonable groups. An adaptation of
8

the number of labels or the time frame of gaps might also influence the
result, but were out of scope for this exploratory paper and is future
work.

The prediction of the gaps by 1-NN also indicates the aforemen-
tioned problems with the complex data. And points in a direction of
methods that adjusts not only to the matching of the sequences, but
also to the different subgroups of the user in order to achieve better
predictive power. The results from the clustering step suggest this, as
does the embedding in the workflow by [13]. Other work also seems
to have problems with predicting adherence. For example, the authors
of [12] have achieved a sensitivity of 0.81 for a dropout event after 90
days, but a specificity of 0.65 and this in a 2-class problem and much
more input data [12]. The results of the evaluation require justification.
This is due to the skewed distribution of the learned classes in the
test data on the one hand and to the nature of the data itself on the
other hand, since tinnitus is already by definition a very heterogeneous
disorder and the patients are very different from each other. Under
these conditions, even a different algorithm would perform below
expectations.

5. Conclusions

In this paper, we proposed a method to investigate a mHealth
dataset for varying phases of attrition according to Eysenbach and
predicted if a user might reach the next phase from the current status.
We used the fragmentation of the time series to predict users’ pauses
with the sequences, after determining them by binning.

We have found that the phases of attrition are best detected by
the Dynp algorithm using change point detection. We have also shown
that they can be predicted by XGBoost for many users, even under
challenging data. The Fischer–Jenks algorithm excelled in detecting
gap labels. In addition, the results of the predictions indicate that good
alignment of the sequences is not sufficient to make good predictions
on this data. And particularly useful for medical experts, we were
able to show that clustering in combination with the phases with
different dropout rates can identify groups of users who exhibit specific
adherence patterns.

Limitation of the approach is the still low predictive power in view
of the very heterogeneous users and the high fluctuation of users. The

approach should still be tested on a dataset that offers more stable
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conditions of use of the mHealth app, such as a clinical trial, a survey,
or an experiment.

Future studies are the evaluation on datasets with other patterns,
in-depth adjustments of the parameters of the individual tools and
possibly testing new elements that harmonize better with the properties
of the data.

Our approach points in a good direction. Open questions remain,
however, regarding the quality of prediction in the domain of self-
monitoring mHealth data from volunteers, an issue that warrants fur-
ther investigation.
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