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Abstract—Route planning, also known as pathfinding, is one
of the key elements in logistics, mobile robotics and other appli-
cations, where engineers face many conflicting objectives. Most
route planning algorithms consider only up to three objectives.
In this paper, we propose a scalable many-objective benchmark
problem covering most of the important features for routing
applications based on real-world data. We define five objective
functions representing distance, travelling time, delays caused by
accidents, and two route-specific features such as curvature and
elevation. We analyse several different instances for this test prob-
lem and provide their true Pareto-front to analyse the problem
difficulties. Additionally, we apply four well-known evolutionary
multi-objective algorithms. Since this test benchmark can be
easily transferred to real-world routing problems, we construct
a routing problem from OpenStreetMap data. We evaluate the
three optimisation algorithms and observe that we are able
to provide promising results for such a real-world application.
The proposed benchmark represents a scalable many-objective
route planning optimisation problem enabling researchers and
engineers to evaluate their many-objective approaches.

Index Terms—route finding, benchmark, many-objective opti-
misation, evolutionary algorithm

I. INTRODUCTION

Optimal pathfinding is among the most challenging tasks
for industrial and logistical applications [1]. Any improvement
in the quality of results can have a considerable impact on
many factors, such as fuel consumption and the environment.
The current state-of-the-art path planning algorithms usually
consider the travel time and the distance in the optimisation.
However, specific applications encounter additional criteria
such as the curvature of the route, the elevation (ascent),
or environmental issues such as air pollution caused by
fuel consumption. These criteria can profoundly influence
the practicability of the solutions. For instance, for animal
transportation, we need to additionally minimise the number
of curves in the route (or maximise the smoothness). Reducing
the length of the path can help to reduce fuel consumption
while possibly increasing the travelling time. Other criteria
such as the ascent of a path can be considered for heavy
vehicles which can consume more fuel on such non-flat routes.

The goal of this paper is to propose a many-objective
path planning problem representing five objective functions
which at the same time are highly related to their real-world
counterparts. This real-world problem can be considered as
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scalable in terms of complexity since the size of the search
space can be varied. To the best of our knowledge, there is
no work in the literature that considers all of these criteria
simultaneously. Similar to existing navigation and route
planning algorithms, we work on a graph-based approach for
addressing this many-objective problem. We additionally apply
the benchmark characteristics to the real-world data from
OpenStreetMap in Berlin.
Our results show that this problem can be used both as
a benchmark and as well as a real-world application. We
additionally provide the true Pareto-front of 272 benchmark
instances, their respective Pareto-sets and the code to generate
specific instances of the proposed benchmark in the supple-
mentary material1.

The paper is structured as follows. In Section II, we provide
an overview of the related works. Section III is dedicated to the
many-objective pathfinding problem, the proposed encoding
and the objective functions. In Section V, we provide ex-
periments using three state-of-the-art optimisation algorithms,
and in Section V-B, we transfer the benchmark and objective
functions to real-world road map data. Section VI concludes
the paper and gives an overview of future work.

II. RELATED WORKS

There is an extensive amount of literature in the field of
route planning and pathfinding in general and especially for
vehicle route planning which uses evolutionary algorithms [2],
[3], [4], [5]. The most important feature concerns the solution
representation, which can define the size of the search space
and influence the efficiency of the algorithms.

Various representations such as graph-based [6], [7], [8],
[9], [10], [11], and grid-based representations [2], [12] have
been suggested for the pathfinding problem. Typically, there
are two main approaches. The first is a variable-length chro-
mosome representation which is often used in combination
with the graph-based problem representation [13], [14], [15],
[16]. This approach represents a solution as a list of nodes,
which can be of different length when computing a path. The
second approach is a fixed-length chromosome, representing
the directions of travel together with a list of nodes in a graph
or a list of grid cells [17], [18], [2]. Grid-based representations
for pathfinding problems are shown to be very practical for
evolutionary algorithms [2], [5]. Such grid representations can
be refined depending on the required resolution of the problem,
as a search space can be defined coarse or fine-grained. The

1Supplementary material, including fronts, sets and code can be found here:
https://ci.ovgu.de/Publications/TEVC WM 2020-p-910.html

https://ci.ovgu.de/Publications/TEVC_WM_2020-p-910.html
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resolution of a problem is the granularity of its representation.
Moreover, they are often used for benchmarking purposes [19],
[20]. Also, they can represent the real-world problems by
discretising the problem representation [21]. Grids typically
consist of units with adjustable size [22]. An encoding can
consist of a linked-list of units [23], the directions [2], or the
coordinates of several waypoints.
It is comparatively easy to convert a grid into a graph by
considering units as nodes and their contact-edges as the
graph’s edges. Grid-to-graph-transfer is done in several appli-
cations, e.g. the game industry when it comes to pathfinding,
by superimposing a grid over an area and using graph-search
algorithms [24]. The commonly used A∗ algorithm is an
example of pathfinding on a grid which is transferred to a
graph [24], [19].
In general, graph-based representations allow higher flexibility
in representing real-world problems, which can be considered
heterogeneous, compared to grids which are usually homoge-
neous. Due to this, in this paper, we present the proposed
benchmark problem as a grid transferred to a graph and
facilitate the methods to evaluate them on realistic graph-
represented road map data.

Considering many-objective pathfinding problems, there is
a limited amount of literature using evolutionary algorithms.
Tozer et al. [8] provide an overview of existing approaches
and use reinforcement learning to address the problem with six
objective functions. Pulido et al. [9] introduce a dimensionality
reduction technique in order to minimise dominance checks
during the optimisation and tested their algorithm on a map
from a real-world application. They extended the NAMOA∗

algorithm, which was first introduced by Mandow [25] and
is a multi-objective extension to the well-known A∗ algo-
rithm [26]. There are several existing benchmark frameworks
such as [27], [28]. Additionally, there are several benchmark
sets for the shortest path problem with multiple objectives,
e.g. [19], [29]. The DIMACS Implementation Challenge -
Shortest Paths [29] presents different road maps of several
US-states, combining different independent data sets. There
are several articles available using these graphs and a multi-
objective approach, e.g. [30]. Other benchmark data sets work
on grid-based approaches, e.g. [19], [8]. Usually, the data sets
and graphs provided in these data sets are large, making it
difficult to compute the true Pareto-front for given objectives.

In [31] three objectives are optimised by using a modi-
fied multi-objective A∗ algorithm, i.e. horizontal and vertical
distance as well the maximal slope of a path. Machuca and
Mandow use distance and time [30] as two objectives. Kanoh
and Kenta additionally include a third objective called total
penalty, in which they aggregate different negative aspects
of a path on a road network [32]. In Tozer et al. [8], six
objectives such as distance, signal loss to a communication
station, observability of an agent, travel time, and the amount
of used energy are proposed.

III. MANY-OBJECTIVE PATHFINDING PROBLEM

In this section, we propose a many-objective pathfinding
problem which can be additionally used as a benchmark

problem with a scalable size of the search space. As this
benchmark aims to represent environments for pathfinding
algorithms on maps, we construct the instances by defining
a cartesian grid with a specific size, where the cells have the
same dimensions, also known as integer lattice. The variable
properties of the benchmark influence the properties of each
cell in the lattice.

A. Benchmark problem construction

The multi-objective pathfinding problem can be defined as
a network-flow problem [33], [9]. The goal is to find a set of
optimal paths P ∗ = {p1, · · · , pL} in a graph G(V,E) from a
starting node nS ∈ V to a pre-defined end node nEnd ∈ V ,
i.e., pi = (nS , · · · , nEnd). Before constructing the problem-
related graph, we model a grid which is used as a map for the
pathfinding problem. We assume to have a two-dimensional
search space defined by a given size (i.e. size of the map)
denoted by the range [1, xmax] in x-direction and [1, ymax]
in y-direction, x, y ∈ N. This search space is divided into
grid cells which define the resolution of the path planning
and therefore, the size of the search space. Eventually, the
grid has xmax number of grid cells in x-direction, and y-
direction accordingly. We define different types of grid cells
denoted by the position (x, y) which impose constraints on the
velocity of movements indicated by vmax(x, y) representing
different road types as well as obstacles (denoted by gLA(x, y)
and gCH(x, y) in supplementary materials) where a movement
cannot occur. The cells with a velocity of zero define infeasible
areas which can add additional non-linear constraints.

We furthermore define an elevation function h(x, y) with
a variable number of hills which can be defined by either
using a peak-function or a combination of hill functions. This
elevation function can be mapped to the cells in the map. Two
more features concern the neighbourhood and backtracking.
The neighbourhood restricts the movement to the possible
neighbour cells to which an agent can move. We use the 2k-
neighbourhood similar to [34]. In this case, k = 2 means
that it is possible to go to one of the four neighbours, known
as the von Neumann neighbourhood, located in the cardinal
directions, where k = 3 defines eight possible neighbours,
taking the diagonal cells into account, known as the Moore
neighbourhood. The backtracking property of the benchmark
defines if an agent can go backwards or only forward. For
instance, if backtracking is allowed and the goal is to go
from the north-west corner of the grid to the southern-east
one, the agent can go in any direction specified by the 2k-
neighbourhood from any cell on a certain path. If backtracking
is not allowed, the agent can only move in the directions of
east, south and south-east (if k = 3). An 8-neighbourhood with
enabled backtracking is also known as king-moves, derived
from chess. A summary of the above adjustable features are
shown in Table I.

In the following, we propose a graph-based representation
of the benchmark grid. Therefore, we describe all objectives
for the evaluation of a solution represented as a path N of
variable length k consisting of a list of adjacent nodes in a
graph G = (V,E): N = (ni, ni+1, · · · , nk) = pi, where ni =
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Fig. 1. Superimposed graphs on grids for K2 (left) and K3 (right) instances

TABLE I
ADJUSTABLE PROPERTIES OF THE PROPOSED BENCHMARK

Property Values

Size {x, y}max ∈ N,
1 < {x, y}max

Movement per cell vmax

Expected delay delay(ni, ni+1)
Elevation Function nh ∈ {1, 2, 3,M}
Neighbourhood 2k , k ∈ {2, 3}
Backtracking {True, False}

nS , and nk = nEnd. However, for the evaluation on the grid
(as described above), the nodes ni can be replaced by their
respective coordinates (xi, yi).

To transfer the grid to its corresponding graph, each cell ci
of the grid with its respective coordinates (xi, yi) is considered
as a node in the graph. In our implementation, we assign
properties to the graph’s elements in the form of key-value
pairs, utilising the property graph data model [35]. Therefore,
we can assign the coordinates as a property to each node,
making it possible to evaluate the objectives. Additionally, the
various cell types, velocity constraints, characteristics about
obstacles, and elevation values are assigned to the properties
of the node. Depending on the 2k-neighbourhood and back-
tracking property, the corresponding nodes are connected to
their respective neighbours using edges. The resulting graph
is also known as lattice graph. Figure 1 shows an example of
the transfer from a grid to a graph.

B. Objective functions

In this section, we will define five objective functions, by
which a solution path N is evaluated.
Objective 1: Euclidean length. The Euclidean length repre-
sents the distance between the start nS and the end nEnd of
a path. It is calculated by the sum of the Euclidean distances
d(ni−1, ni) between the neighbouring vertex pairs ni−1 and
ni in a solution path N as follows:

f1(N) =
K−1∑
i=1

d(ni, ni+1) (1)

We consider that i = 1 corresponds to the starting point
nS and the last node of a path nK maps to the endpoint
denoted nEnd. Figure 2 illustrates an example. In real-world
applications, this objective can be additionally used to estimate
fuel consumption.
Objective 2: Expected delays. The second objective is
meant to measure the expected delay in a given path. In

S

E

Fig. 2. Objectives (1) and (5) on an example path modelled by a graph

real-world applications, delays are caused by accidents or
traffic. Therefore, a delay is a likelihood of having an accident
or encountering other blockages on each node of the path.
However, in our proposed approached we do not take draws
from the probability distribution, making it deterministic. The
expected delay per path segment between the nodes ni and
ni+1 is defined by the differences between the corresponding
velocity values of the two adjacent nodes. Our proposed
second objective f2 calculates the sum of delay for all the
edges on a given path N :

f2(N) =
K−1∑
i=1

delay(ni, ni+1) (2)

Objective 3: Elevation. The aggregated ascent of a solution
path is represented by the third objective. Our proposed bench-
mark contains various possibilities for defining the elevation
function h(ni) which is defined on a node ni. The ascent is
calculated between two nodes in the graph e(ni, ni+1). and the
third objective f3(N) is the sum of the elevations between all
the nodes in a path N :

f3(N) =
K−1∑
i=1

e(ni, ni+1)

e(m,n) =

{
h(n)− h(m), if h(n) > h(m)

0, otherwise

(3)

This objective can represent the amount of fuel consumption
in a real-world application.
Objective 4: Traveling time. The fourth objective rep-
resents the traveling time. For this purpose, we utilise

the average velocity of two subsequent nodes defined by
vmax(ni)+vmax(ni+1)

2 for each node ni and use the length of
the path utilised in Objective 1:

f4(N) =
K−1∑
i=1

2d(ni, ni+1)

vmax(n) + vmax(ni+1)
(4)

Objective 5: Smoothness. The smoothness, or curvature, of a
path is modelled in the fifth objective. We measure smoothness
by calculating the angle between three nodes on a path, as
shown in Figure 2. The angle θ is obtained by extending the
line between two nodes and measuring the angle to the third
node. Similar to [36], [14], we invert a · b = ‖a‖‖b‖cos(θ):

f5(N) =
K−1∑
i=2

arccos

( −−−−→nini−1 · −−−−→ni+1ni
|−−−−→nini−1| · |−−−−→ni+1ni|

)
(5)

Since we intend to minimise the objective values, the
smaller smoothness value represents a more straight path.
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IV. BENCHMARK TEST SUITE

In the following, we propose various examples for a test
suite by selecting specific features for the defined variables of
the benchmark. We set nS = (1, 1) as the start and nEnd =
(xmax, ymax) as the end nodes. In this way, a path starts
in the north-western and ends in the south-eastern corners.
We set 4 various kinds of cells with velocity values vmax of
130, 100, 50 and 0. As for obstacle cells with vmax = 0,
we propose two different forms: 1) the chequerboard pattern
is designed to simulate block-like environments, and 2) the
lake obstacle denotes a larges region which is not passable
(Figure 3). For the chequerboard obstacles, we define every
second cell to be an obstacle in both x and y directions. The
lake obstacle is defined as a circle on the grid. The circle
radius is defined by a fraction of the x-size of the grid. We
represent the checkerboard and lake obstacles as a variant
of the square wave function and circle function, respectively
(Equations are provided in the supplementary materials). In
the tested instances, the lake obstacles are defined by a radius
of xmax/4. Figures 3b to 3c show the two obstacle types on an
example instance of the benchmark problem. Figure 3a shows
an example instance of size 20.

The corresponding equations are provided in the supple-
mentary materials.

As for the elevation, we take four hill functions in the
domain [−3, 3] which will be scaled when applied to the grid
with cell coordinates (x, y) represented by the node n in the
path segment. To determine the corresponding height value
h(x, y), the two cell coordinates have to be scaled to the in-
terval [−3, 3], hence [{1, 1}, {xmax+1, ymax+1}] → [−3, 3]
and (x, y) → (xs, ys), {xs, ys ∈ R| − 3 ≤ xs, ys ≤ 3}.
In the equation, we refer to (xs, ys) to represent the scaled
coordinates.:

hm(xs, ys) =3(1− xs)2e−x
2
s−(ys+1)2 − 10e−x

2
s−y

2
s

(−x3s + xs/5− y5s)− 1/3e−(xs+1)2−y2
s

h1(xs, ys) =5e−(xs+1.5)2−(ys+1.5)2

h2(xs, ys) =5e−(xs−1.5)2−(ys−1.5)2

h3(xs, ys) =5e−(xs−1.5)2−(ys+1.5)2

(6)

We choose these functions to represent different height set-
tings on the grid. Equation hm also known as peaks-function
has various hills and valleys. Since this function is defined in
the interval of [−3, 3], we define the other three functions in
the same interval. Each of the other three equations represents
a hill on the landscape. In the supplementary material in Sec-
tion A-C, these functions’ linearly combinations are depicted.
By combining them, various elevation characteristics of the
problem instances can be achieved. Eventually, an instance can
have hm or a linear combination of the others as its elevation
function. Therefore, we define h as:

h(x, y) =


∑nh

i=1 hi, if nh ∈ {2, 3}
h3, if nh = 1

hm, if nh = M

(7)

For the third objective, we aggregate positive slopes, as we
want to focus on flat routes. Taking also negative elevations
into account can result in a path containing a hill with a steep
gradient which cannot be beneficial for a bulky transportation.
The fourth objective, expected delay, is defined by vmax

of two subsequent cells (refer to supplementary materials
Equations (10) and (11).)

All these variations of the properties are used in the name
of a benchmark instance. The name starts with ASLETISMAC
for the five objectives to be minimised (Ascent, Length,
Time, Smoothness and Accidents (expected delay)), then the
obstacle type, followed by the size in X and Y directions,
then the elevation function is represented (PM stands for the
peaks-function hm and the combination is set to Pnh), fol-
lowed by the 2k-neighbourhood and the backtracking property
(B followed by T for True or F for False). For example,
ASLETISMAC CH X10 Y10 P1 K2 BF defines an instance
with the chequerboard obstacles, sized 10x10, nh = 1 as the
elevation function (one hill), four possible neighbours (K2),
but no backtracking (BF). For the values of delays (caused
by accidents) in the second objective, we refer to real-world
statistical data (see Equation (2))2. We adopt the likelihood
of encountering an accident from real-world data, depending
on the vmax of a certain cell. For instance, it is much more
likely to have an accident when driving on streets located in a
city, i.e. with a lower vmax. Therefore, we assume a smaller
likelihood of encountering an accident with higher velocities.
We also assume a large likelihood when the type of street
changes, e.g. going over an access road or an exit road.

A. Obtaining the true Pareto-Front

We have performed an exhaustive search on 272 bench-
mark instances with different obstacle types, sizes, elevation-
functions, neighbourhood metrics. In order to obtain the
fronts, we performed a depth-first search (DFS) from the
cell at the northern-west corner to the south-east corner
cell. The larger the instances are, the longer the DFS takes
to complete. The most complex in terms of the num-
ber of possible paths, which we evaluated, is the instance
ASLETISMAC NO X14 Y14 PX K3 BF, that has a size of
14x14, 4-neighbourhood and no backtracking. For this in-
stance, there are 1, 409, 933, 619 possible paths.

The number of possible paths are represented by specific
integer sequences (visible at oeis.org) and is shown in Table III
in supplementary materials.

B. Benchmark Characteristics

The proposed benchmark has several specific characteristics.
Regarding the decision space, we can define a fixed length
or a variable length encoding of solutions. Fixed encodings
are suggested especially for the K2,BF instances, as the
allowed paths have the same length f1(N), i.e. f1(N) =
((xmax − 1) + (ymax − 1)). Using a variable-length approach
can represent the problem as a combinatorial one. For this

2https://www.destatis.de/EN/Themes/Society-Environment/
Traffic-Accidents/ node.html

https://www.destatis.de/EN/Themes/Society-Environment/Traffic-Accidents/_node.html
https://www.destatis.de/EN/Themes/Society-Environment/Traffic-Accidents/_node.html
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(b) lake obstacle
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(c) checkboard-obstacles

Fig. 3. Examples of grid cell properties (dark to light colours represent high to low speed values)

purpose, we can use graph, real-value or integer-value rep-
resentations. In this case, the true Pareto-fronts of the test
instances are disconnected and degenerate due to the discreet
search space. Also, the fronts are irregular, and the different
objectives have different scales. An interesting characteristic
of this benchmark regards the fact that similar paths on the
grid are not necessarily close in the objective space, implying
that paths which are different in the majority of their nodes can
lead to similar objective values. In the K2,BF instances, the
challenges for algorithms depend on the chosen representation
to find a feasible path, as the ratio of infeasible to feasible
solutions is relatively high. In the supplementary material,
Figures 10 to 14 show two examples of obtained true Pareto-
sets and fronts, as well as algorithmic results.

V. EXPERIMENTS

In the experiments, we aim to investigate the degree of the
difficulty of the proposed benchmark problem. We apply four
different state-of-the-art evolutionary algorithms to several

instances to evaluate the complexity of the benchmark. Fur-
thermore, we present a custom mutation operator, which can
operate on a variable-length chromosome consisting of a list
of nodes.

In our proposed benchmark, we consider a solution to be a
sequence of nodes N = (n1, · · · , nk) with a variable-length
k. We take this representation for the encoding in evolutionary
algorithms. The variable-length chromosome poses difficulties
for the algorithms but can be very efficient when using realistic
data since intersections and endpoints are not homogeneously
distributed, and paths usually have different lengths. This
representation has been used by [37], [38], [39] and studied
by [40].

We use a one- or two-point cross-over for this encoding
as follows. If two selected solutions have intersection points
except for the start and end nodes, these points can be
used as possible cut-off points. If there are fewer than two
intersections, we use a one-point cross-over. Additionally, we
define the so-called perimeter mutation operator. From a given
path which is to be mutated, we take two arbitrary points
within a maximum network distance dmax = |N |

2 and compute
their middle point. Then we search for a random point within a
maximum distance of rmax, using an R-Tree index, which was
generated upfront [41]. We perform a random-search (local
search) from the first and second points to it. Depending on the

benchmark instance, we either consider all neighbouring nodes
within the radius in positive cardinal and diagonal directions
(instances of type K3,BF) or a subset of them: nodes in
positive cardinal directions for K2,BF.

In the experiments, we use the NSGA-II [42], NSGA-
III [43] and DIR-enhanced NSGA-II (d-NSGA-II) [44] algo-
rithms. The d-NSGA-II uses a diversity indicator based on
reference vectors [44], making it suitable for many-objective
optimisation problems. Additionally, we used an indicator-
based algorithm, i.e. the ISDE+ algorithm [45]. For all four
algorithms, we set the population size to 212 as in the original
NSGA-III study. We set the probabilities for cross-over and
mutation to 0.8 and 0.2, the number of divisions for NSGA-
III to p = 6, maximum number of generations to 500, and all
for 31 runs for statistical analysis. The task of the pathfinding
algorithm is to find a path from the north-west corner to the
south-east corner.

To compare the algorithms, we calculated the IGD+

indicator [46], [47]. The results are compared and tested
for statistical significance using the non-paremetric Kruskal-
Wallis test and Bonferroni correction for multiple independent
samples, as suggested by Knowles et al. [48]. The null-
hypothesis states that that the distributions of the four
samples have equal medians. Statistical significance of the

differences between the performance is assumed for a p-value
smaller than 0.01.

A. Results

In the first part of our analysis, we count the number of
successful runs in which the algorithms could obtain the entire
Pareto-front. A front is found if the IGD+ is 0 in all 31 runs on
the algorithms. Given 272 valid instances, NSGA-II, NSGA-
III, d-NSGA-II and ISDE+ were not able to find the complete
true Pareto-fronts for 234, 233, 240 and 221 instances. This
indicates the difficulty of the benchmark for specific instances.
For 15 instances, the algorithms did not find a result. This
outcome occurred mostly on the small X3 Y3 instances. The
reason for this is the customised operators which can fail on
relatively short paths. It can occur that the mutation operator
will not find a suitable node in the given radius. In the future,
we want to make the operators more robust to any length of the
paths. After running the experiments, we obtained complete
results for 257 instances. By complete we mean that we
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Fig. 4. Obtained IGD+ Values for the instance
ASLETISMAC NO X14 Y14 PM K3 BF

TABLE II
WINS, LOSSES AND TIES OF EACH ALGORITHM WITH STATISTICAL

SIGNIFICANCE AT p < 0.01, BONFERRONI CORRECTION APPLIED, IGD+

INDICATOR.

d-NSGA-II ISDE+ NSGA-II NSGA-III

Wins 3 9 164 7
Losses 174 196 31 191
Ties 80 52 62 67

obtained the results from all 31 runs for an instance for all
four algorithms. Figure 4 shows the obtained IGD+ values
for the instance ASLETISMAC NO X14 Y14 PM K3 BF
for which none of the algorithms found the whole Pareto-
front, indicating the complexity of the problem. We observe
that NSGA-II obtains the best result, even if NSGA-II is
not usually thought to be the best option for many-objective
problems. In Table II, the wins, losses and ties are shown for
each of the used algorithms.

Overall, NSGA-II performed the best in the IGD+ indicator
on the majority of instances (statistically significant difference
for p < 0.01, see Figure 9), which can be due to the crowding
distance estimation to maintain diversity which is beneficial
to irregular Pareto-fronts [44]. However, the results of the
ISDE+ algorithms indicate, that more algorithms of this class
have to be tested on the benchmarks, as it has the highest
number of completely solved instances. Five other instances,
their Pareto-Set and the result set of the four algorithms
are presented in the supplementary material in Figures 10
to 14. The ISDE+ algorithm shows the most diverse results in
the decision space. When analysing the algorithms’ progress,
we often saw in the K2,BF instances that some algorithms
converged to paths going only down and then right. Therefore,
we conclude that it can be challenging for algorithms to
explore these instances’ search space, as they can fall into local
optima. The proposed benchmark suite generates instances, in
which closeness of paths does not reflect closeness in objective
space. In conclusion, size, neighbourhood, and backtracking
increase the search-space size, and conversely, by changing the
two latter to a value which decreases the search-space, they
also increase the ratio of infeasible to feasible solutions. The
convergence to local optima can be observed in Figure 14 in

Fig. 5. Map of Berlin showing the best path in terms of each objective.
Min Ascent, Min Length, Min Time, Min Smoothness, Min
expected delay, the dashed black line represents the path from the original
OpenStreetMap Routing Service

the supplementary material. From a visual perspective it seems
that the ISDE+ algorithm is less prone to these challenges.

B. Real-World Data

In the following, we aim to transfer the problem from the
proposed benchmark to a real-world application. We use the
data on the map of Berlin and compute a set of paths between
the two airports Berlin-Tegel and Berlin-Schönefeld. For this
purpose, we use OpenStreetMap data which is imported and
converted to an undirected graph via the osmnx library [49].
We simplify the network by removing nodes which do not rep-
resent an intersection. The resulting graph has 63731 vertices
and 84912 edges. For merged edges, we took the maximum
values of the merged partners and aggregated the distances.
Due to this, our computed path is an approximation but can
be used to analyse the algorithm’s performance on real-world
data. Figure 5 shows the layout of the map and depicts the
start and endpoint.

Since this is a real-world problem, we do not know the
true Pareto-front. To approximate the performance of the
algorithms, we combined all results from all four algorithms
and all 31 runs and calculated the non-dominated solution set.
We obtained 1422 non-dominated solutions. Figure 5 shows
a subset of the obtained non-dominated solutions and the
path obtained from the OpenStreetMap routing service. For
clarity, we do not illustrate the whole set but only five non-
dominated paths from one airport to the other, representing
the best solution per objective. It is visible that the paths have
differences. Furthermore, the paths with the fewest number of
accidents are mostly going over highways, indicating that the
algorithms could explore the search space. Interestingly, our
obtained path with the least time is the same as that obtained
from the OSM routing service. All depicted paths could be

recommended to a hypothetical driver, representing different
possible requirements. The blue route is most likely the most
reliable one since it contains the least expected delay, albeit
being comparably long. Also, the red route is suitable for
vehicles with less power. With the obtained reference from
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Fig. 7. Parallel coordinates plot of the best paths for each objective

all runs, we were able to calculate the IGD+ indicator for the
three algorithms. Figure 6 shows the respective values of the
obtained results and Figure 7 shows the parallel coordinates
plot of the best solutions per objective. In this experiment,
NSGA-III obtained the best median; however, it significantly
outperforms d-NSGA-II and ISDE+ only.

The experiments show that while the NSGA-II performed
the best on the majority of the benchmark instances, the
NSGA-III is at least equally good on the real-world example.
The artificial instances distinguish from the real-world exam-
ple as they are ordered as a grid, while real-world data is
usually more heterogeneous. An algorithm’s performance can
depend on the underlying structure. The artificial instances
reflect the properties of real-world street networks to a certain
extent while being scalable and variable.

VI. CONCLUSION

In this paper, we present a scalable many-objective pathfind-
ing benchmark problem representing a real-world related navi-
gation problem on actual map data. The benchmark is scalable
and can be used to analyse many-objective optimisation tech-
niques for path and route planning and navigation. Different
obstacle types, as well as elevation functions, neighbourhoods
and backtracking properties, can be adjusted according to
the required complexity. We proposed five objective func-
tions for the benchmark related to real-world goals when
planning a route. Furthermore, we obtained the true Pareto-
fronts for several benchmark instances which we also provide

in the supplementary material. Additionally, we used three
existing evolutionary algorithms to minimise five objectives
and compared the results with the obtained true Pareto-fronts
of several benchmark instances. Moreover, we transferred
the benchmark’s characteristics to real-world data by adding
further information to an obtained OpenStreetMap data graph.
We also applied the algorithms with the same parameters and
could obtain promising results.
In the future, other real-world road characteristics will be
included in the benchmark suite, such as bridges, one-way
or two-way streets or different distributions of certain road
types, reflecting the hierarchical properties of real-world ex-
amples. In addition, we will work on advanced algorithms
and operators. Besides, we aim to analyse more extensive and
complex instances of the problem, specifically the instances
with enabled backtracking. As this will increase the search
space by several magnitudes, we also intend to investigate
more sophisticated methods to obtain the true Pareto-fronts of
more complex instances.
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APPENDIX A
SUPPLEMENTARY MATERIALS

A. Obstacles on the map

The following equations are defined for the Lake gLA and
Checkerboard gCH obstacles. These equations are mapped
to the grids with the grid cell positions of (x, y). With
these functions, cells of the grid can be identified where
obstacles will be positioned, hence cells with vmax = 0. The
two provided obstacle functions can be used as a constrain-
ing function when running an optimisation algorithm. They
take the cell’s coordinate as an input and output a True or
False value determining if the specified cell is an obstacle.
For all obstacle functions holds: {x ∈ N|1 ≤ x ≤ xmax} and
{y ∈ N|1 ≤ y ≤ ymax}.

gCH(x, y) =sign
(

sin
(π

+ π x
))

+ sign
(

sin
(π

+ π y
))

2 2
− 2 Π (x − xmax) Π (y − ymax) = 2

(8a)

Π(x) = H

(
x+

1

2

)
−H

(
x− 1

2

)
(8b)

where H(x) is the so-called Heaviside step function.

gLA(x, y) =(
x− 1−xmax

2

)2
+
(
y − 1−ymax

2

)2
− (r xmax)

2
< 0

(9)

where r denotes the radius ratio.

B. Velocity functions

To determine the velocity vmax of each cell, except obstacle
cells with vmax = 0, we have used the following equation, rep-
resenting three street types, i.e. highways, country roads and
city streets, derived from the usual speed-limits in Germany.
The function takes the cell’s coordinates as an input and out-
puts the respecting vmax for that cell. The provided values can
be exchanged or extended to represent other road networks.
For all the velocity function holds: {x ∈ N|1 ≤ x ≤ xmax}
and {y ∈ N|1 ≤ y ≤ ymax}.

vmax(x, y) =


130, if w(x, y) > 0.9

50, if w(x, y) < −0.4

100, else
(10)

where w(x, y) = max (sin(x−1), cos(y−1)).
Derived from this property, also the expected delay per path

segment is defined.

delay(ni, ni+1) =
2 if vmax (ni) 6= vmax (ni+1)
3 if vmax (ni) = vmax (ni+1) = 50
1 if vmax (ni) = vmax (ni+1) = 100
1
5 otherwise

(11)
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(d) Elevation profile for nh = 3

Fig. 8. Different elevation profiles of the proposed benchmark

TABLE III
INTEGER SEQUENCES OF POSSIBLE NUMBER OF PATHS FROM THE

NORTH-WESTERN CORNER TO THE SOUTH-EASTERN ONE WITH NO
OBSTACLES ON OEIS.ORG FOR THE SIZE OF NXN

ASLETISMAC NO Xn Yn P K(2,3) B(F,T)

Benchmark type Integer sequence

K3,BF A001850
K3,BT A140518
K2,BF A000984
K2,BT A007764

C. Height functions

In addition to the presented height functions, we show
in Figure 8 a visual representation of the different available
options.

D. Number of possible paths

The number of possible paths are represented by specific in-
teger sequences (visible at oeis.org) and is shown in Table III:

E. Data sets and Code

To enable researchers to use the proposed benchmark, we
also publish the code to generate different benchmark instances
and the obtained true Pareto-fronts and sets. Everything can be
downloaded here: https://ci.ovgu.de/Publications/TEVC WM
2020-p-910.html. We used Java and the jMetal framework in
version 6 [50]. However, the code enables researchers to create
different grids and export them as a csv-file to import it in other
software or to use other programming languages. The codes
also contain a readme file.

F. Real-World Data

OpenStreetMap provides the GPS-coordinates for a grid
representation which can be easily used to measure the path
length for the first objective. As for the second objective

https://oeis.org/A001850
https://oeis.org/A140518
https://oeis.org/A000984
https://oeis.org/A007764
https://ci.ovgu.de/Publications/TEVC_WM_2020-p-910.html
https://ci.ovgu.de/Publications/TEVC_WM_2020-p-910.html
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concerning the delay (number of accidents), we used the pub-
licly available accident statistic data from 20183 and mapped
them to the imported network. Since the coordinates of the
accidents are mostly different from the available nodes in the
network, we defined an R-tree index [41] on the network and
performed a nearest node search for each accident. In this
way, we aligned each accident to a node in the network. The
third objective was measured using the Google Maps Elevation
API4. The elevation is obtained in meters over the sea level
and written to the node’s properties. For the smoothness,
we simplified the network to straight connections between
nodes. Therefore, it is obtained in the same way as in the
proposed benchmark. From the OpenStreetMap network, we
could also obtain the information about speed limits per street
segment. We calculated the time needed per segment as the
ratio of distance and speed. Summing up the values of each
segment results in the total traveling time (Objective 5). For
the experiments, we take the same parameter settings as above
with only one-point cross-over.

G. Results

Figure 9 illustrates the obtained IGD+ values with respect to
the different types of the problem instances. Figures 10 to 14
show true Pareto-fronts, sets and results from the algorithms
for five different instances. For the smoothness objective,
values are given in degrees.

3https://web.archive.org/web/20200704125405/https://unfallatlas.
statistikportal.de/ opendata2019.html

4https://developers.google.com/maps/documentation/elevation/start

https://web.archive.org/web/20200704125405/https://unfallatlas.statistikportal.de/_opendata2019.html
https://web.archive.org/web/20200704125405/https://unfallatlas.statistikportal.de/_opendata2019.html
https://developers.google.com/maps/documentation/elevation/start
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(a) IGD+ Values for all P1 instances
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(b) IGD+ Values for all P2 instances
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(c) IGD+ Values for all P3 instances
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(d) IGD+ Values for all PM instances

Fig. 9. The obtained IGD+ values with respect to the different type, ordered by instance size
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(a) Pareto-Set of instance ASLETISMAC NO X5 Y5 P3 K3 BF
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(b) Pareto-Front of instance
ASLETISMAC NO X5 Y5 P3 K3 BF

Instance: NO_X5_Y5_P3_K3_BF Algorithm: NSGA-II
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(c) Result set of algorithm NSGA-II

Instance: NO_X5_Y5_P3_K3_BF Algorithm: NSGA-III
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(d) Result set of algorithm NSGA-III

Instance: NO_X5_Y5_P3_K3_BF Algorithm: ISDE+
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(e) Result set of algorithm ISDE+

Instance: NO_X5_Y5_P3_K3_BF Algorithm: DNSGA-II
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(f) Result set of algorithm D-NSGA-II

Fig. 10. Pareto-Set and Front of instance ASLETISMAC NO X5 Y5 P3 K3 BF and result sets of all algorithm (median run with respect to IGD+ value)
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ASLETISMAC_CH_X14_Y14_PM_K3_BF Pareto Set
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(a) Pareto-Set of instance
ASLETISMAC CH X14 Y14 PM K3 BF
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(b) Pareto-Front of instance
ASLETISMAC CH X14 Y14 PM K3 BF

Instance: CH_X14_Y14_PM_K3_BF Algorithm: NSGA-II
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(c) Result set of algorithm NSGA-II

Instance: CH_X14_Y14_PM_K3_BF Algorithm: NSGA-III
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(d) Result set of algorithm NSGA-III

Instance: CH_X14_Y14_PM_K3_BF Algorithm: ISDE+
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(e) Result set of algorithm ISDE+

Instance: CH_X14_Y14_PM_K3_BF Algorithm: DNSGA-II
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(f) Result set of algorithm D-NSGA-II

Fig. 11. Pareto-Set and Front of instance ASLETISMAC CH X14 Y14 PM K3 BF and result sets of all algorithm (median run with respect to IGD+

value)
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ASLETISMAC_LA_X10_Y10_PM_K3_BF Pareto Set
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(a) Pareto-Set of instance
ASLETISMAC LA X10 Y10 PM K3 BF
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(b) Pareto-Front of instance
ASLETISMAC LA X10 Y10 PM K3 BF

Instance: LA_X10_Y10_PM_K3_BF Algorithm: NSGA-II
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(c) Result set of algorithm NSGA-II

Instance: LA_X10_Y10_PM_K3_BF Algorithm: NSGA-III
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(d) Result set of algorithm NSGA-III

Instance: LA_X10_Y10_PM_K3_BF Algorithm: ISDE+
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(e) Result set of algorithm ISDE+

Instance: LA_X10_Y10_PM_K3_BF Algorithm: DNSGA-II
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(f) Result set of algorithm D-NSGA-II

Fig. 12. Pareto-Set and Front of instance ASLETISMAC LA X10 Y10 PM K3 BF and result sets of all algorithm (median run with respect to IGD+

value)
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ASLETISMAC_LA_X13_Y13_P2_K2_BF Pareto Set

2 4 6 8 10 12

X-Coordinate

2

4

6

8

10

12

Y
-C

o
o
rd

in
a
te

(a) Pareto-Set of instance
ASLETISMAC LA X13 Y13 P2 K2 BF
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(b) Pareto-Front of instance
ASLETISMAC LA X13 Y13 P2 K2 BF

Instance: LA_X13_Y13_P2_K2_BF Algorithm: NSGA-II
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(c) Result set of algorithm NSGA-II
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(d) Result set of algorithm NSGA-III

Instance: LA_X13_Y13_P2_K2_BF Algorithm: ISDE+

2 4 6 8 10 12

X-Coordinate

2

4

6

8

10

12

Y
-C

o
o
rd

in
a
te

(e) Result set of algorithm ISDE+

Instance: LA_X13_Y13_P2_K2_BF Algorithm: DNSGA-II
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(f) Result set of algorithm D-NSGA-II

Fig. 13. Pareto-Set and Front of instance ASLETISMAC LA X13 Y13 P2 K2 BF and result sets of all algorithm (median run with respect to IGD+ value)
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ASLETISMAC_LA_X9_Y9_P2_K3_BF Pareto Set
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(a) Pareto-Set of instance ASLETISMAC LA X9 Y9 P2 K3 BF
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(b) Pareto-Front of instance
ASLETISMAC LA X9 Y9 P2 K3 BF

Instance: LA_X9_Y9_P2_K3_BF Algorithm: NSGA-II
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(c) Result set of algorithm NSGA-II

Instance: LA_X9_Y9_P2_K3_BF Algorithm: NSGA-III
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(d) Result set of algorithm NSGA-III

Instance: LA_X9_Y9_P2_K3_BF Algorithm: ISDE+
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(e) Result set of algorithm ISDE+

Instance: LA_X9_Y9_P2_K3_BF Algorithm: DNSGA-II
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(f) Result set of algorithm D-NSGA-II

Fig. 14. Pareto-Set and Front of instance ASLETISMAC LA X9 Y9 P2 K3 BF and result sets of all algorithm (median run with respect to IGD+ value)
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