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Abstract. Which of several notations is easier to understand? This question 
arises for conceptual models, query or programming languages. Answering it 
empirically by experiments involves numerous decisions (e.g., experimental 
design, dependent variables and sample size). This paper presents a methodical 
guideline for planning, conducting and evaluating such experiments. The sug-
gestions are supported by the open-source tool notate. Applying the guideline 
and the tool in an experiment revealed that a graphical notation used within 
SAP AG is precise as a textual notation, but is also more difficult to understand. 
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1   Practical Motivation 

Ideally, software development starts from abstract descriptions of use cases, database 
schemas, system architecture, or messages exchanged between software components. 
Usually, the descriptions follow a notation provided by some model (such as the enti-
ty-relationship (ER) model) or modelling language (such as the unified modelling lan-
guage UML). A notation consists of constructs (geometric figures, characters, num-
bers, or symbols) and a syntax, which restricts the allowed construct combinations. 

Notations are rather arbitrary (for ER models see, e.g., [15]), and new ones contin-
uously spring up at major conferences like ER, ATPN and CAISE. But, inventing no-
tations is not only an academic exercise - it can become necessary if ideal software 
development is done in praxis. SAP AG experienced this phenomon in developing its 
latest application system:  

In an iterative process including several steps of approval, SAP AG first created 
formalized descriptions of the new system’s architecture and functionality. The devel-
opers then had to adhere exactly to the approved system descriptions1; thus, that the 
notations used in the descriptions must be easy to understand and unambiguous. 

Since the architecture of the new application system differs from what has been  
known to date, it could not be expressed by common models without extending or 
modifying them. Hence, SAP AG decided to create a set of new models, each repre-
senting another view on the system. Among them, I encountered redundancy, since 

                                                           
1 Although only smaller parts of the source code are automatically generated, SAP AG uses the 

term ‘model-driven development’. The system descriptions are called ‘models’. 



complex data types are described simultaneously by two notations (see Fig. 1): The 
graphical one represents the attributes (‘elements’) of the complex data type by 
rectangles, their (element) data types by parallelograms, and uses special arcs to show 
whether or not the attributes are optional (‘cardinality’2). The textual notation ex-
presses the same information by tables, where attributes, their data types, and cardi-
nalities are contained in rows3.  

a) Graphical notation    b) Textual notation 
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Fig. 1. Equivalent Notations for Complex Data Types (Content Extract,  SAP AG) 

Many developers I asked preferred the table notation, but subjective judgements are 
too weak to change a decision that touches the work of hundreds of people. Finally, I 
was allowed to examine which of the notations was easier to understand. 

Reviewing how understandability is usually tested in computer science raised many 
questions (see Section 2). To answer them, I buried myself in the basics of experi-
mental research in psychology and assembled the guidelines found in Section 3. 
Section 4 reports the results I obtained by applying the guideline to test the under-
standability of the notations in Fig. 1. Finally, Section 5 highlights the contributions 
of this paper. 

2   Research on Understandability in Computer Science 

The debate about various styles of notations and their ease of use, including under-
standability, has a long history in computer science. One of the earliest disputes took 
place in artificial intelligence by praising the merits of either predicate logic [8], [12],  
which is usually4 written as text, or visual representations and diagrams [13], [19]. I 

                                                           
2 The term ‘cardinality’ is slightly misleading, since multi-valued attributes are not allowed. 
3 The SAP tables contain additional columns for value ranges, integrity conditions, etc. I 

omitted them in my experiment to keep the comparison fair. 
4 Conceptual graphs (http://conceptualgraphs.org/) are a graphically notated predicate logic.  
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Table 1. Experiments on the Understandability of Models or Languages 

Study Independent 
Variables (Levels) 

Tasks 
(Number) 

Dependent  
Variables 

Experimental 
Design 

N Statistical  
Procedure 

Results 

[2] Data model  
(EER, RDM) 

Modelling 
(1 case) 

Correctness 
(review), perceived 
ease of use 

2 groups, 
matched in 
experience 

42 t-test of 
means 

• EER leads to higher correctness  
• No difference in perceived ease of use 

[3] Conceptual data 
model (EER, 
KOOM) 

Modelling 
(1 case) 

Correctness 
(review) 

2 groups, 
random 
assignment 

38 matched-
pairs t-test 
for means 

• Mostly no differences in correctness 
• Higher correctness of EER only for some 

facets  

[5] Graphical query  
languages 

Comprehension 
(32),  Query 
specification 
(14) 

Correctness 
(review) 

1 group, 
repeated 
measurement 

27 χ2-test on 
distribution 

Graphical queries are: 
• Easy to comprehend  
• Not easy to specify  

[9] Database 
representation style
(graphical, textual),
database 
complexity 

Query 
specification 
(20)  

Correctness 
(review), solution 
time, perceived 
ease of use 

2 x 2 factorial 
design, 
repeated 
measurement 

36 3 way 
analyses of 
variance 
(ANOVA) 

Compared to textual representations, graphical 
representations lead to: 
• Shorter time to specify a query  
• Higher correctness of the queries  
• Higher perceived ease of use. 

[10] Conceptual data 
models (EER, 
SOM, ORM, 
OMT) 

Modelling 
(2 cases) 

Correctness 
(review), 
modelling time, 
perceived ease of 
use 

4 groups, 
random 
assignment 

100 Duncan test Increased correctness and faster solutions for 
EER and OMT   

[14] Conceptual models 
(DSD, ERM, 
OOM) 

Comprehension 
(30) 

Correctness, 
solution time 

3 groups 121 ANOVA, 
correlation 
analysis 

• Highest correctness for OOM  
• Shortest solution time for OOM, followed 

by DSD, ERM  

Abbreviations: DSD: Data Structure Diagram, EER: Extended Entity-Relationship Model, (K) OOM: (Kroenkes) Object Oriented Model, N: Total 
number of participants, SOM: Semantic Object Model, ORM: Object Role Model, OMT: Object Modelling Technique, RDM: Relational Data Model
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skip that discussion here, because all of the cited papers base their claims solely on 
examples - quite suggestive indeed, but only anecdotal evidence.  

Empirical research on ease of use of, e.g., (conceptual) data models, query 
languages, or representation styles, relies on experiments. The list in Table 1 is not 
intended to be exhaustive, but merely to illustrate the variety of ways available to 
conduct such experiments.  

An experiment is a scientific investigation in which one or more independent varia-
bles are systematically manipulated to observe their effects on one or more dependent 
variables [17]. The independent variable is the one whose effect is to be examined 
(e.g., ‘data model’); the values it can take during manipulation are called levels (e.g., 
ERM, RDM) [17]. In contrast to the independent variable (which is given by the 
research question), the dependent variable can be chosen freely, provided that it 
serves as a measure of the effect [16]. In Table 1, the effect is ease of use. 

The dependent variables, as well as the number of independent variables and the 
number of their levels, the number of participants, and the statistical procedure, all 
vary among the studies in Table 1. All these decisions relate to experimental design, 
i.e., the way participants are selected and assigned to experimental conditions [16].  

The results of the experiments in Table 1 are not uniform. For example, the higher 
perceived ease of use of graphical notations as compared to textual ones [9] was not 
confirmed by the results in [2]. Such comparisons are to some extent unfair, since 
they presuppose a common definition of graphical and textual notations, which ac-
tually does not exist (see the comprehensive discussion in [18]). I discriminate as 
follows (analogous to [13]): The constructs of textual notations are (strings of) signs 
(characters, numbers, or symbols), which are allowed to form sequences or arrays. In 
contrast, the constructs of graphical notations are geometric figures (e.g., circles, 
rectangles, or arcs), which can be arbitrarily connected. Hence, ER diagrams and Fig. 
1a) arise from graphical notations, whereas RDM schemas and Fig. 1b) stem from 
textual ones. 

Even for graphical notations in Table 1, the results are contradictory. For example, 
[14] discovered a significantly higher correctness for object-oriented modelling than 
for ER modelling, whereas [3] reported the contrary, at least for some aspects. Is the 
result obtained by the larger number of participants more trustworthy? Does a more 
sophisticated statistical procedure guarantee greater validity? These questions are di-
scussed in Section 3.4, which deals with the evaluation of experiments.  

Table 1 does not help one in planning experiments, as it leaves the appropriate ex-
perimental design, task, dependent variable(s), etc. undecided. The guideline makes 
respective suggestions in Section 3.2; they are derived from the nature of experiments 
(Section 3.1), which must be regarded in conducting experiments (Section 3.3).  

3   A Guideline for Experiments on Understandability in  
      Computer Science 

3.1   The Nature of Experiments 

Experiments are always guided by the hypothesis that the independent variable(s) will 
cause the changes in the dependent variable(s) [17]. The amount of change of the de-
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pendent variable actually due to the manipulation of the independent variable is called 
primary variance [16]. Unfortunately, primary variance cannot be obtained directly; it 
is ‘hidden’ in the total variance of the experimental data, which also contains second-
ary and error variance. Both are unwanted though different in their impact on the 
experimental results. Error variance is a consequence of random effects (e.g., faulty 
measurements or individual differences among participants). It affects the 
experimental data fairly equally and decreases precision, but will not disturb the 
statistical conclusions [17]. Secondary variance, on the other hand, stems from factors 
other than the independent variables (referred to as secondary or extraneous variables) 
that systematically influence the dependent variable(s)) and thus confound the results 
[17]. The degree to which the variation of the dependent variable can be attributed to 
the independent variable (rather than to some other factor) is called internal validity; 
it decreases if extraneous variables exist [17]. 

To cope with secondary variance, the extraneous variables must first be identified. 
Often they can be gathered from relevant literature. For instance, [2], [3], and [9] 
recognize the influence of task complexity and user experience on understandability. 
Other extraneous variables with known effect on the performance of participants are:   
1. Related to the experimental situation: The location (noise, room temperature), the 

time of day (e.g., experiments in the morning usually yield better results than ones 
after lunch), and the equipment (failures, calibration) [6]. 

2. Related to the persons involved in the experiment [16]: 
• Participants: Their age, sex, mental ability, experience, motivation (to complete 

all tasks or to boycott the experiment).  
• Experimenter: The ability to instruct participants, bias (expecting a particular 

outcome unconsciously distorts the experimenter’s behaviour or data gathering). 
1. Related to the conduct of the experiment: 

• Position effect: Performance depends on the timely distance of a task from the 
start of the experiment (e.g., fatigue, getting bored, learning) [11]. 

• Carry-over effect: The performance achieved in some task depends on whether 
or not some other task has been done before [17]. 

If the extraneous variables of some experimental situation have been identified, they 
can be controlled by the techniques described in Section 3.2. Controlling secondary 
variance while simultaneously minimizing error variance will maximize primary vari-
ance, i.e., the effect a researcher is interested in becomes more obvious. This is the 
basic idea behind experimental design (see Section 3.2). In the following, I will focus 
on experiments that deal with the understandability of notations in computer science.  

3.2   Planning an Experiment 

Experiments determine whether a particular hypothesis is either true or false. Hence, 
the hypothesis must first be formulated. A hypothesis is understood as a testable 
statement of a potential relationship between two or more variables [16]. Testability 
requires the hypothesis to be formulated in terms that are manipulable (for the 
independent variable) and measurable (for the dependent variable).  

In the context of this paper, two generic types of hypotheses can occur:  



• One-tailed: A particular notation can be understood easier than another one.  

• Two-tailed: Particular notations differ in their understandability. 

The statistical test procedure often dictates the type of hypothesis. If not, a one-tailed 
hypothesis is only allowed to contrast two notations and it must be reasonably sure 
which of them is superior [17]. This will rarely be the case (see the conflicting results 
in Table 1). Using a one-tailed instead of a two-tailed hypothesis increases the risk of 
Type I errors (see Section 3.4).  

Formulating the hypothesis is strongly connected to selecting independent and de-
pendent variables. Here, the independent variable (IV) - the one whose effect is to be 
examined - is notation, and the particular notations to be compared (e.g., ERM, RDM 
or a) and b) of Fig. 1) form its levels. Since the dependent variable must be tested 
under at least two conditions, at least two levels of the independent variable are 
necessary [17]. This can be achieved by contrasting either two notations or a notation 
and a control group. In a control group, the independent variable is not manipulated; 
natural language is used instead of a notation5.  

Rarely more than four levels of an independent variable are investigated. Exami-
ning more than one independent variable requires a factorial design (see Table 2). 
More than three independent variables are not recommended, because this will render 
statistical analysis rather cumbersome and interpretation difficult [16]. 

The dependent variable (DV) is the one on which the effect of the independent var-
iable is measured. Experiments on understandability belong to the field of (cognitive) 
psychology, where the dependent variable generally refers to behaviour. Common 
measures of behaviour – potential DVs - are the following [16]:  
• Frequency, e.g., the number of correct answers or solved problems. 
• Response latency (or response time), which is concerned with how long it takes for 

a behaviour to be emitted, e.g., how quickly a participant reacts.  
• Response duration, i.e., the length of time behaviour occurs (e.g., how long a 

participant deals with a task).  
• Selection, e.g., which of several notations a participant uses for modelling or which 

of several answers he or she chooses. 
• Amplitude, measuring the strength of response, e.g., the brain activities in per-

forming a task. 
Better understandability manifests itself by a greater number of correct answers, shor-
ter response times, and less brain activity [1], [4]. Measuring amplitude is reserved for 
neuroscience. Multiple-choice questions about the content of descriptions are based 
on the measure ‘selection’ (of answers), but the experiments in Table 1 used only 
open questions. Frequency can be easily counted, but requires the experimenter to i-
dentify correct solutions [4]. This becomes difficult if the task (see Table 1) consists 
in modelling or query specification, because assessing correctness ex-post by reviews 
bears the danger of experimenter bias.  

Time-based measures do not primarily consider correctness (they also accept wrong 
solutions), but they need additional equipment and are thus susceptible to 
measurement errors. Nevertheless, it has a long tradition in psychology to draw 

                                                           
5 [5] wrongly compares the actual understandability of some query language not to a control 

group, but to a  theoretical and, hence, rather idealistic performance. 
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conclusions concerning mental processes from the time spent dealing with a problem 
(solution time, see Table 1) [1], [11]. However, such conclusions are double-edged: A 
shorter solution time may indicate either an easier problem (a notation that is easier to 
understand) or a participant with a higher IQ [16]. 

Perceptions (as the perceived ease of use in Table 1) are not a measure of 
behaviour in psychology because they are not observable and can therefore be easily 
distorted by the participants. Whether participants apply one notation or another to 
model a system is obvious. However, this choice is not solely due to the notation’s 
ease of use, but also to the expertise and training of the participant [7].  

The experimental task restricts the suitable measure of behaviour. Psychology 

knows numerous task types [1], [16]. In the experiments discussed here, the task 
should allow assessing the ease of use of notations, which has two dimensions: Crea-
ting descriptions (modelling) or specifications and understanding them (reading) (Ta-
ble 1). It is more reliable to conduct experiments with the focus on understanding de-
scriptions, because only cognitive psychology provides at least a few (yet rather 
vague and partially conflicting) explanations [1]. Moreover, this focus relieves us of 
the difficulties in evaluating whether some results of modelling are correct.  

In summary, I suggest investigating not the ease of use of notations, but rather their 
understandability. It can be inferred from the reading of descriptions, provided that 
they refer to equivalent content and differ only in notation. The particular measure 
forming the dependent variable should guarantee unambiguous and uniform data 
gathering (see Section 3.3). The number of dependent variables is not limited. Using 
more than one measure of behaviour increases the reliability of the findings [4]. 

The next step in planning an experiment consists in controlling secondary variance. 
This is achieved by tackling its source, the extraneous variables (EV); see Section 3.1. 
The following control techniques exist [16], [17]: 
1. Remove the EV from the experimental situation, e.g., use a quiet room. 
2. Make the EV an independent variable if it has a strong influence on the dependent 

variable and can be systematically varied (e.g., the complexity of tasks). This con-
trol technique increases the explanatory value of experiments and concurrently 
makes experimental design and statistical analysis more complicated.  

3. Hold the EV constant if the experimental design should be kept simple and the EV 
cannot be removed. Constancy is often applied to methodological aspects of an ex-
periment, e.g., all participants are instructed by the same person, tested on the same 
time of day, etc. It guarantees that all conditions are identical except for the manip-
ulation of the independent variable. 

4. Randomize an EV that cannot be removed when its influence is not known (e.g., 
differences between male and female participants in understanding notations); 
must be neutralized (e.g., position effects, carry-over effects) or should be equated 
(e.g., mental ability, experience). Randomization, the main principle of statistical 
sampling, should be applied whenever possible, since it increases the external 
validity of the experiment, that is, its ability to be generalized [16]. 

An experimental design can be regarded as a general plan for (types of) experiments 
that join independent variables and control techniques. Table 2 summarizes the main 
experimental designs; all have been used in computer science (see Table 1). 



In a between-subjects (or n-groups) design, the participants are randomly assigned 
to several groups [6]. Each group is treated by only one level of the independent vari-
able (in our context, a particular notation). Thus, carry-over effects between alter-
native notations cannot occur. However, especially in small samples (number of par-
ticipants in a group ni < 15, total number of participants Σ ni = N < 30) randomization 
may lead to groups that are unequal concerning individual characteristics of the par-
ticipants (e.g., IQ, experience); this can skew the experimental outcomes. 

A block design (synonyms: paired/matched groups) avoids unequal groups. Here, 
at least one matching factor strongly connected with the dependent variable is chosen 
(e.g., experience), the participants are classified according to the levels of this factor 
(e.g., high, medium, low experience) and randomly assigned to groups, so that each 
factor level is represented in all groups by the same number of participants [17]. In 
other words, the matching factor is kept constant. The effort this design causes is only 
worth if the matching factors are highly correlated; detecting them is difficult. 

Table 2. Summary of Experimental Designs and Statistical Test Procedures 

Design Between-subjects Within-subjects Block (Matched)  Factorial  

No. of IV 
(levels) 

1 (n) 1 (n) 1 (n) m > 1  (n) 

No. of 
groups 

n 1 n m × n 

Pro: 
 

No carry-over effects • Simple 
• Small samples  
• Constancy of 

individual 
characteristics 

• Precise 
• No carry-over 

effects 
• Individual dif-

ferences balanced 

Interactions  
between IV 
can be examined 

Contra: • Unequal groups 
possible  

• Large samples  

• Carry-over effects 
• Experimenter bias 

• Effort 
• Matching factor 

must exist 

• Large samples  
• Difficult to in-

terpret for m > 3 

Statistical test procedures  

Metric 
DV 

♦: independent t  
∗: F-test, ANOVA 

♦: paired t-test of means 
∗: MANOVA  

MANOVA 

Ordinal 
DV 

♦: Mann-Whitney U 
∗: Kruskal-Wallis H 

♦: Wilcoxon signed rank test (matched) 
∗: Friedman’s χ2 

- 

Nominal 
DV 

♦/∗: χ2 contingency 
test  

♦: Sign test, McNemar’s test of change 
∗: Cochran’s Q-test 

- 

Sample 
Size ♣ 

1-t: ni = 20 [50] 
2-t: ni = 25 [60] 

1-t: N = 11 [26] 
2-t: N = 15 [35] 

see between- 
subjects 

2-t only, m = 3: 
ni =  20 [50] 

♣ To detect a large [a medium] effect (see Table 3) with (1 - β) = 0.8 and α = 0.05. 

The within-subjects (or repeated-measurements) design is appropriate to yield signifi-
cant results with a small sample without demanding preparation [6]. Here, one group 
is tested for all levels of the independent variables, i.e., for all notations. In this set-
ting, all extraneous variables related to the persons involved in the experiment remain 
constant. The disadvantages of this design consist in carry-over effects and experi-
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menter bias: As a result of carry-over effects, participants may transfer solutions 
obtained by some notation (e.g., content they have understood) to tasks that use an-
other notation. Moreover, the expectations of the experimenter may impair his or her 
instructions (e.g., the favourite notation is explained better), or tip the participants off 
to the research goal. Section 3.3 shows how to avoid these disadvantages.   

If more than one independent variable is investigated, a factorial design must be 
applied [16]. Here, the groups are the result of combining each level of an indepen-
dent variable (e.g., notation) with each level of another one (e.g., experience). Since 
each participant is assigned to only one group, a large sample is required. The more 
levels or independent variables that are considered, the more difficult become the 
planning and the statistical evaluation of the experiment.  

The appropriate experimental design depends on practical considerations (partici-
pant availability, acceptable effort, etc.) and on theoretical ones such as the control 
technique and the research question. Experiments that answer the question, “Does the 
IV have an effect?” are called exploratory, whereas analytical experiments deal with 
the question, “How much of an effect does the IV have?” [16]. Due to potentially 
unequal groups, two-groups designs are restricted to exploratory experiments which 
involve a control group. Factorial designs allow exploratory and analytical inves-
tigations [16]. Within-subjects designs must be carefully conducted to yield valid 
analytical results. The question we are interested in is analytical, since differences in 
the understandability of notations are already known. 

The last step in planning an experiment is determining the sample size N, i.e., the 
total number of participants in all groups. The rough recommendations in Table 2 are 
derived from the requirements of the statistical test procedures, the acceptable statis-
tical errors and the desired effects; this is discussed briefly in Section 3.4. 

3.3   Conducting an Experiment 

The actual experiment must properly put the chosen design into action, focusing on 
minimizing error variance. 

Section 3.2 suggested assessing the understandability of notations based on reading 
descriptions (diagrams, formal text). Reading is measured by questions on the content 
read [1]. The number of correct answers for each notation and the response time can 
then act as dependent variables; both measures are independent.  

Experimenter bias in determining correctness cannot occur if the questions have 
multiple-choice form and allow only one ultimate solution [4]. The solutions chosen 
by the participants constitute an additional (but correlated) dependent variable. Multi-
ple-choice questions with three answers reduce the possibility of answering correctly 
by chance and, at the same time, do not confound the response time with the time for 
reading a long list of answers. Answers should be formulated positively (negations 
distort the solution time [1]) and not obviously false. Moreover, the correct answers 
should be spread over the options participants can choose. 

The within-subjects design suggests itself as a simple one that requires few partici-
pants. External validity is achieved by assembling the group as heterogeneously as 
possible. Internal validity requires controlling the extraneous variables, which is quite 
easy in experiments on the understandability of notations. Carry-over effects are neu-



tralized if tasks that refer to distinct notations are presented in random order and if the 
content described in the tasks is comparable but not identical. To reduce the danger of 
experimenter bias, not only the notations of interest should be tested but also an 
additional ‘placebo notation’ (which is, however, not evaluated). 

Negative position effects such as getting bored or tired can be avoided if the tasks 
are as brief and as interesting as possible [17]. Learning is a positive position effect 
that, however, may lead to skewed results [9]. A warm-up phase, i.e., several tasks 
whose solutions are not evaluated, encapsulates very strong learning in the beginning 
of an experiment [17]. It also makes participants familiar with the equipment and thus 
reduces errors in operation.  

Measurement errors are not uncommon if dependent variables rely on time. To in-
crease the reliability of the gathered data (i.e., to produce the same results from one 
occasion to another [6]), I have developed the tool notate. It is available for down-
loading from the website http://sourceforge.net/projects/notate. Notate fulfils the re-
quirements listed in this section: It shows multiple-choice questions and the descrip-
tions they refer to in random order and records response times, responses, and correct-
ness. Notate supports experiments on understandability in general and, since it is an 
open-source project, can be adapted to specific experimental needs. 

3.4    Evaluating an Experiment 

The statistical evaluation of experiments on the understandability of notations consists 
in assessing differences between measures of central tendency (mean, mode, etc.) or 
dispersion (variance, standard deviation, etc.), proportions, or total numbers. Planning 
and conducting experiments aim at ascribing as much of these differences as possible 
to the influence of the independent variable.  

Statistical test procedures generally assume that differences in experimental out-
comes arise by chance (null hypothesis). On the basis of probability distributions, one 
can calculate the probability of an observed outcome if the null hypothesis proves 
true. If this probability (p-value) is very low (by convention: Smaller than α = 0.05 
[7]), it is unlikely that an observed difference is accidental. Hence, not the null but the 
alternative hypothesis is valid, which attributes the difference to some systematic 
influence of the independent variable(s). Results that require rejecting the null hy-
pothesis (p < α) are called statistically significant; α describes the probability of 
making a Type I error (rejecting the null hypothesis when it is true [7]). 

Numerous statistical test procedures exist; e.g., [16], [17], and [6]. Experimental 
design and the measurement scale of the dependent variable determine which of them 
are allowed in evaluating an experiment. Tests that are typically implemented in soft-
ware packages like SPSS are summarized in Table 2. Non-parametric tests that apply 
to non-metric variables are usually applicable, since metric variables can be trans-
formed. Such tests remain valid if the assumptions of parametric tests (e.g., certain 
distributions within the population from which the sample came) are not fulfilled [6].  

Concentrating on statistical significance alone can be misleading, because signifi-
cance is affected by sample size [6]: If the same experiment is conducted indepen-
dently with varying sample size, the larger sample may yield a statistically significant 
result, while the smaller one does not. Which result is closer to the empirical ‘truth’ 
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depends on the detected effect. Effect size expresses the magnitude of a result (the 
actual difference in the understandability of notations), independently of sample size 
[6]. Table 3 summarizes the effect size measures that agree to the statistical test 
procedures of Table 2. It also defines what constitutes a small, medium or large effect. 
Approximating the effect of non-parametric tests requires samples with N ≥ 25, where 
z-scores can be calculated by assuming normal distribution [7].  

Table 3. Measuring Effect Size 

Effect Effect size measure Statistical test 
procedure  

Refe-
rence Small Medium Large 

σ
µµd 21 −=     or    

dft
tr 2

2

t,es +
=  

t-test* [7] 0.2 0.5 0.8 

N
χω

2

=  
χ2-test [7] 0.1 0.3 0.5 

2

2
µ2

σ
σ

η =  
F-test (ANOVA) [7], [6] 0.01 0.06 0.14 

N

z
r z,es =  

U-test or any 
other that yields 
a z-score 

[17] 0.1 0.3 0.5 

µ1, µ2: Group means, σ: Standard deviation. σ2 (σµ
2): Total (Between group means) variance,  

t, χ2 (z): Test statistics (z: normal distribution), N: Total number of participants (N = Σni),  
df: Degrees of freedom. 

∗ Between-subjects design: σ of either group, within-subjects design: adjusted σ [6]. 

None of the investigations of Table 1 reported effect sizes, and mostly the statistics to 
calculate them ex post (test statistics, mean, standard deviation, or variances) are not 
given. Without effect sizes, it is not sensible to compare empirical results [6]. [3] and 
[14] provide at least enough aggregated experimental data to determine the effect 
sizes, which actually are large (d = 1.3 to d = 2.12 for the higher correctness of EER 
[3], and η2 = 0.15 for the greater correctness of OOM [14]). 

Besides sample size, statistical significance depends on the value α, which was not 
even stated in [9] and [14]. The larger α is set and the easier significance is achieved. 
A very small value of α decreases the danger of making a Type I error at the cost of a 
growing probability β of a Type II error (failing to reject the null hypothesis even if it 
is false) [6]. Statistical power is defined as the probability of avoiding a Type II error. 
As a rule of thumb, it is set to 0.8, corresponding to β = 0.2 [6]. A small β guarantees 
that significant differences in the understandability of notations are detected. 

Power can be used retrospectively to assess a statistical test or prospectively to de-
termine which sample size is necessary to reveal a large, medium or small effect for a 
given experimental design and statistical test procedure (e.g., [6], [7]). The sample 
sizes recommended in Table 2 result from a prospective power analysis.  



4    Applying the Guideline to Test SAP’s Notations  

Whether the graphical or the textual notation of Fig. 1 is easier to understand is an 
analytical research question. The contradictory results of Table 1 call for a two-tailed 
hypothesis; whether a one-tailed hypothesis can be formulated depends the particular 
data gathered in the experiment. 

Notation constitutes the independent variable, with its levels comprising of a) and 
b) of Fig.1 and a placebo (UML class diagrams). Since the tool notate was applied 
in the experiment, response time and the number of correct answers form the 
dependent variables.  

A within subjects-design can very simply answer my analytical research question. 
15 participants are necessary to detect a large effect (d = 0.8) by the corresponding 
paired t-test (two-tailed) with a power of 0.8 and α = 0.05 [6]. In contrast, under the 
same conditions (d, α, β), non-parametric tests need 16 to 24 subjects [6]. N = 30 - the 
typical sample size used in Table 1 - additionally buffers against outliers. 

For a small financial incentive, 42 subjects (35 male, 7 female) volunteered to par-
ticipate in the experiment. Six of them already had graduate degrees in computer 
science, the other 36 were students (undergraduates: 17, graduates: 19) of computer 
science, computational visualistics, data and knowledge engineering, and business 
informatics from three universities. The sample size relevant to the statistical test pro-
cedures is smaller than 42, as I had to remove outliers (detected by SPSS boxplots).  

The experiments were conducted in groups over several days at the same time; the 
instructor did not change. Each participant was seated at a PC where the tool notate 
was installed. The participants received written instructions and explanations of the 
notations to be tested (levels of the IV). After 15 minutes, the warm-up phase began. 
When all participants had finished this phase, the actual experiment started. The sub-
jects were told to answer all questions correctly and as quickly as possible. During 
both the warm-up and the experiment, the questions appeared randomly on each PC. 

The warm-up phase consisted of six questions: Two for each level of the IV, res-
pectively related to a small and a large description. The experimental data was 
gathered from another 27 questions. All questions referred to diagrams and tables that 
describe SAP’s latest application system. The size of the diagrams and tables in the 
experiment (Table 4) agrees with the complexity of SAP’s real-world descriptions. 

The questions were in multiple-choice form, dealt with cardinalities and had only 
one correct solution6. To check whether or not the questions were clearly formulated, 
I conducted a pre-test involving five participants; this data is omitted in Table 4. 

Table 4 shows the descriptive statistics. Concerning the correctness of answers, 
there is no significant difference between the notations a) and b) of Fig. 1 (t = -1.481, 
df = 39, N = 40, p = 0.147, two-tailed). The non-parametric sign test leads to the same 
conclusion (N = 40, p = 0.166; one-tailed in favour of the textual notation), whereas 
the Wilcoxon matched-pairs signed rank test shows a significant superiority of the 
textual notation at  α = 0.1 (z = -1.470, N = 40, p = 0.085, one-tailed). 

                                                           
6 Referring to Fig. 1b): What does the description express? a) In each expense report, at least 

one stay location is given; b) Expense reports, where the name of the stay location is missing, 
are allowed; or c) Each expense report must contain exactly one stay location. Answer b) is 
correct. 
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On the other hand, a significantly shorter response time indicates that the textual 
notation is easier to understand (N = 39): The paired t-test detects a significant diffe-
rence (t = 5.625, df = 38, p = 0.00, two-tailed), while both one-tailed tests – the sign 
test (z = -4.163, p = 0.00) and the Wilcoxon test (z = -4.585, p = 0.00) - favour the 
textual notation. All statistics are calculated by the program SPSS version 14.0.1. 

The t-test could not detect a significant difference in correctness because the effect 
is small (d = 0.30; σadjust = 0.56); for the Wilcoxon-test, it is almost medium (res,z = 
0.23). The significantly shorter response time for the textual notation should also not 
be overemphasized, since it results from only a medium effect in the t-test (d = 0.60; 
σadjust = 5.05); in the Wilcoxon-test, however, the effect is large (res,z = 0.73.). 

The notations SAP AG has invented are equally capable of unambiguously de-
scribing the application system. Unambiguity is one of the most critical aspects in the 
model-driven development process. The textual notation is just easier to read. 

Table 4. Summary of Input and Output of the Experiment 

Notation level  Graphical (Fig. 1a) Textual (Fig. 1b) Placebo 
Size of the diagrams underlying the questions 
Very small (ca. 4 attributes/classes) 2 2 2 
Small (ca. 9 attributes/classes) 2 2 2 
Medium (ca. 14 attributes/classes) 4 4 2 
Large (> 18 attributes/classes) 2 2 1 
Sum 10 10 7 
Descriptive statistics 
Number of correct answers µ = 9.63, σ = 0.59 µ = 9.80, σ = 0.52 - 
Response time (seconds) µ = 26.41, σ = 5.12 µ = 23.37, σ = 4.98 - 

5    Contribution of this Paper  

I could have concluded this paper by emphasizing the precision of graphical notations 
and their bad understandability (compared to textual ones). In the light of all the 
papers that either glorify the “easy to understand” graphical notations (e.g., [13] [19]) 
or complain about their vagueness (e.g., [20]), these results would be quite surprising. 
But they miss my contribution:  

This paper presents a guideline for conducting experiments on understandability –
not only of notations, but also of the constructs of higher-level programming 
languages, etc. This guideline is not provided as another bundle of paper, but 
supported by and implemented in the tool notate, which can be modified to fit 
specific experimental situations. Notate can be applied quite broadly, helps 
researchers to avoid common mistakes in empirical research (e.g., neglecting carry-
over or warm-up effects) and makes the conducted experiments comparable. 

Comparability requires standardizing the statistical assumptions (α = 0.05 and β = 
0.2) and the reporting of statistics: Following APA, mean, standard deviation or 
variance, test statistic, sample size, degrees of freedom and p-value should always be 
given (http://apastyle.apa.org/). Standardization enables meta-analysis that pools the 



results of prior studies to create an integrated view on the empirical situation [17]. 
Perhaps meta-analysis reveals the actual superiority of some notational style. 

In acknowledging my results, SAP AG admitted that the graphical notation became 
necessary, because the tool containing the repository of the new application system is 
unable to display tables. So, redundant modelling is unavoidable here. SAP AG will 
apply my guideline in an upcoming experiment to test the understandability of alter-
native notations for business processes before they are released to public. 
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