

Fakultät für Informatik
Otto-von-Guericke-Universität Magdeburg

Nr.: FIN-01-2008

EDBT’08 WORKSHOP ON SOFTWARE
ENGINEERING FOR TAILOR-MADE
DATA MANAGEMENT (PROCEEDINGS)
Nantes, France, March 29, 2008

Editors:
Sven Apel (Passau)
Marko Rosenmüller (Magdeburg)
Gunter Saake (Magdeburg)
Olaf Spinczyk (Dortmund)

Impressum (§ 10 MDStV):

 Herausgeber:
 Otto-von-Guericke-Universität Magdeburg
 Fakultät für Informatik
 Der Dekan

 Verantwortlich für diese Ausgabe:

Otto-von-Guericke-Universität Magdeburg
Fakultät für Informatik

Postfach 4120

 39016 Magdeburg
E-Mail:

http://www.cs.uni-magdeburg.de/Preprints.html

Auflage:

Redaktionsschluss:

Herstellung: Dezernat Allgemeine Angelegenheiten,
 Sachgebiet Reproduktion

Bezug: Universitätsbibliothek/Hochschulschriften- und

Tauschstelle

Gunter Saake

saake@cs.uni-magdeburg.de

70

Februar 2008

EDBT’08 Workshop on Software Engineering for
Tailor-made Data Management (Proceedings)

Nantes, France, March 29, 2008

Editors: Sven Apel (University of Passau)
Marko Rosenmüller (University of Magdeburg)
Gunter Saake (University of Magdeburg)
Olaf Spinczyk (Dortmund University of Technology)

ii

Foreword

Tailor-made data management software (DMS) is not only important in the field of embedded systems.
A DMS that incorporates only required functionality bears the potential to strip down the code base and
to improve reliability and maintainability. The desire for tailor-made data management solutions is not
new: concepts like kernel-systems or component toolkits have been proposed 20 years ago. However, a
view on the current practice reveals that nowadays DMS are either monolithic DBMS or special-purpose
systems developed from scratch for specific platforms and scenarios, e.g., for embedded systems and sensor
networks.
While monolithic DBMS architectures hinder a reasonable and effective long-term evolution and mainte-
nance, special-purpose solutions suffer from the conceptual problem to reinvent the wheel for every plat-
form and scenario or to be too general to be efficient. A mere adaptation of present solutions is impossible
from the practical point of view, e.g., it becomes too expensive or simply impractical, which is confirmed
by the current practice. Especially in the domain of embedded and realtime systems there are extra require-
ments on resource consumption, footprint, and execution time. That is, contemporary data management
solutions have to be tailorable to the specific properties of the target platform and the requirements and
demands made by the stakeholders and the application scenario.
We and others (see, e.g., VLDB’03 Panel ”A Database Striptease”) noticed that the world of data manage-
ment is in flux. Computing paradigms such as Ubiquitous and Pervasive Computing and new dimensions of
systems such as ultra-large systems (ULS - SEI report 2006) arise at the horizon. To keep track with these
developments something really has to change in developing data management solutions. The problem of
monolithic software architecture is not exclusive to DBMS. For example, in the domain of operating systems
or middleware similar problems occurred. In the last twenty years (especially the last 5 years) researchers in
these domains made significant progress in designing software towards customizable and well-structured ar-
chitectures without sacrificing reasonable performance or resource consumption characteristics. Especially,
work on software product lines, components, patterns, features, and aspects is promising in this respect.
These techniques should also be applicable to DMS.
The main goal of this workshop is to gather people from different fields related to software engineering and
data management to find out who is working on related topics and what is the current state of the art.

iii

iv

Contents

FAME-DBMS: Tailor-made Data Management Solutions for Embedded Systems 1
M. Rosenmüller, N. Siegmund, H. Schirmeier, J. Sincero, S. Apel, T. Leich, O. Spinczyk, G. Saake

A Relational File System as an Example for Tailor-made DMS 7
K. Koll

Flexible Transaction Processing in the Argos Middleware . 12
A. Arntsen, M. Mortensen, R. Karlsen, A. Andersen, A. Munch-Ellingsen

Tailor-made Lock Protocols and their DBMS Integration . 18
S. Bächle, T. Härder

Database Servers Tailored to Improve Energy Efficiency . 24
G. Graefe

Generating Highly Customizable SQL Parsers . 29
S. Sunkle, M. Kuhlemann, N. Siegmund, M. Rosenmüller, G. Saake

Architectural Concerns for Flexible Data Management . 35
I. E. Subasu, P. Ziegler, K. R. Dittrich, H. Gall

A New Approach to Modular Database Systems . 41
F. Irmert, M. Daum, K. Meyer-Wegener

v

vi

FAME-DBMS: Tailor-made Data Management Solutions for
Embedded Systems

Marko Rosenmüller1, Norbert Siegmund1, Horst Schirmeier2,
Julio Sincero3, Sven Apel4, Thomas Leich5, Olaf Spinczyk2, Gunter Saake1

1University of Magdeburg, {rosenmue,nsiegmun,saake}@ovgu.de
2Dortmund University of Technology, {horst.schirmeier,olaf.spinczyk}@tu-dortmund.de

3University of Erlangen-Nuremberg, sincero@cs.fau.de
4University of Passau, apel@uni-passau.de

5METOP Research Institute, thomas.leich@metop.de

ABSTRACT
Data management functionality is not only needed in large-
scale server systems, but also in embedded systems. Re-
source restrictions and heterogeneity of hardware, however,
complicate the development of data management solutions
for those systems. In current practice, this typically leads to
the redevelopment of data management because existing so-
lutions cannot be reused and adapted appropriately. In this
paper, we present our ongoing work on FAME-DBMS, a re-
search project that explores techniques to implement highly
customizable data management solutions, and illustrate how
such systems can be created with a software product line ap-
proach. With this approach a concrete instance of a DBMS
is derived by composing features of the DBMS product line
that are needed for a specific application scenario. This pro-
duct derivation process is getting complex if a large number
of features is available. Furthermore, in embedded systems
also non-functional properties, e.g., memory consumption,
have to be considered when creating a DBMS instance. To
simplify the derivation process we present approaches for its
automation.

1. INTRODUCTION
Traditionally, research on data management software is

discussed in the context of large-scale database manage-
ment systems (DBMS) like Oracle, IBM DB2 or Microsoft
SQL Server. In recent years, data management has also been
shown increasingly important for embedded systems [17].
Embedded systems are used as control units in cars, cell
phones, washing machines, TV sets, and many other devices
of daily use. Visions of pervasive and ubiquitous comput-
ing [26] and smart dust [25] emphasize the importance of
embedded systems for the future. Two factors make these
systems special and challenging for data management: First,
embedded devices have usually restricted computing power
and memory in order to minimize production costs and en-
ergy consumption. Second, embedded systems are strongly

heterogeneous, meaning that most systems differ in software
and hardware. Software for these systems is usually imple-
mented specifically for a single system and a special appli-
cation scenario.

For new application scenarios data management is often
reinvented to satisfy resource restrictions, new requirements,
and rapidly changing hardware [7]. This practice leads to an
increased time to market, high development costs, and poor
quality of software [9, 15]. A general data management in-
frastructure could avoid this by separating data management
and application logic [13]. Considering the limited resources
and special requirements on data management, traditional
DBMS are not suited for embedded environments [23, 6].

In this paper, we present our ongoing work on the FAME-
DBMS research project1. Our goal is to develop, extend, and
evaluate techniques and tools to implement and customize
DBMS. Such techniques have to account for the special re-
quirements of embedded systems. For that, we employ the
software product line (SPL) approach based on static com-
position of features. With an SPL approach and techniques
that enable to modularize also crosscutting features we can
attain high variability which is needed for embedded sys-
tems. However, variability also increases the configuration
space (i.e., the number of possible variants of a DBMS)
and requires assistance to derive and optimize a concrete
DBMS. We present two techniques to partially automate this
product derivation process. First, to identify features of a
DBMS SPL, needed for a particular client application, we
use static program analysis. Second, we propose to partially
automate the configuration process by using non-functional
constraints, i.e., constraints that are used to restrict the non-
functional properties of a DBMS like performance or me-
mory consumption. We present first results and show what
problems arise and what challenges are still ahead.

1The project is funded by German Research Foun-
dation (DFG), Projects SA 465/32-1 and SP 968/2-1.
http://www.fame-dbms.org/

1

2. TAILOR-MADE DATA MANAGEMENT
Resource constraints and a diversity in hardware of em-

bedded systems forces developers to tailor software to a
large number of application scenarios. Data management
is needed in embedded systems but often reimplemented be-
cause existing solutions lack customizability. SPLs enable to
develop software that can be tailored to different use cases
with minimized development effort. This technology should
also be applicable to tailor data management solutions for
embedded systems.

2.1 Software Product Lines
Developing software that contains only and exactly the

functionality required can be achieved using an SPL. Ex-
isting implementation techniques like components are in-
appropriate to support fine-grained customizability also of
crosscutting concerns if they are used in isolation [17]. Us-
ing static composition, e.g., based on C/C++ preprocessor
statements, achieves high customizability while not effect-
ing performance. However, C/C++ preprocessor statements
degrade readability and maintainability of source code [22,
5].

To avoid such problems new techniques – that are ap-
plicable to embedded systems – have to be explored and
developed. In the FAME-DBMS project, we study aspect-
oriented programming (AOP) [14] and feature-oriented pro-
gramming (FOP) [3, 18] for implementing SPLs. In contrast
to components, AOP and FOP also support modularization
of crosscutting concerns. By using AspectC++2 and Fea-
tureC++3, both language extensions of C++, we are able to
use these paradigms for embedded systems.

Here we concentrate on FOP and FeatureC++, however,
most of the presented concepts also apply to AOP. Using
FOP, features are implemented as increments in functional-
ity of a base program [3]. For product derivation (i.e., cre-
ating a concrete instance of a product line) a base program
has to be composed with a set of features. This results in a
number of different variants of an application.

2.2 Downsizing Data Management
There are solutions to apply the SPL approach to data ma-

nagement software. One possibility is to design a DBMS
product line from scratch, starting with domain analysis and
implementing and testing its features. Alternatively, instead
of beginning from scratch, one can refactor existing data ma-
nagement systems, e.g., using FOP. When starting with ex-
isting, tested, and optimized data management systems and
incrementally detaching features to introduce variability this
results in a stripped-down version that contains only the core
functionality. Additional features can be added when re-
quired for a certain use case. This approach, also known as
extractive adoption [8], reduces the required effort and risk
which makes it especially attractive for companies that want
2http://www.aspectc.org/
3http://wwwiti.cs.uni-magdeburg.de/iti db/fcc/

to adopt SPL technology for their products. In the FAME-
DBMS project, we chose this approach to compare down-
sized versions with the original application which makes it
useful as a research benchmark.

In a non-trivial case study we refactored the C version of
the embedded database engine Berkeley DB into features.
The footprint of Berkeley DB is fairly small (484 KB) and
there are already a few static configuration options avail-
able. Even though, it is still too large for deeply embedded
devices and contains several features like TRANSACTIONS
that might not be required in all use cases. Therefore, we
transformed the Berkeley DB code from C to C++ and then
refactored it into features using FeatureC++. We used be-
havior preserving refactorings to maintain performance and
to avoid errors.

Our case study has shown that the transformation from C
to FeatureC++ (1) has no negative impact on performance or
resource consumption, (2) successfully increases customiz-
ability (24 optional features) so that we are able to create
far more variants that are specifically tailored to a use case,
and (3) successfully decreases binary size by removing un-
needed functionality to satisfy the tight memory limitations
of small embedded systems.

The results are summarized in Figure 1. Before refactor-
ing, the binary size of Berkeley DB embedded into a bench-
mark application was between about 400 and 650 KB, de-
pending on the configuration (1–6). After transformation
from C to FeatureC++, we could slightly decrease the binary
size (Figure 1a) while maintaining the original performance
(Figure 1b)4. By extracting additional features that were not
already customizable with preprocessor statements we are
able to derive further configurations. These are even smaller
and faster if those additional features are not required in a
certain use case (Configurations 7 and 8 in Figure 1). This
illustrates the practical relevance of downsizing data mana-
gement for embedded systems.

2.3 FAME-DBMS
Decomposing Berkeley DB showed us that FOP and Fea-

tureC++ are appropriate for implementing DBMS for em-
bedded systems. We could furthermore show that a fine
granularity, also of core functionality like the storage ma-
nagement, can be achieved using FOP [16]. However, when
decomposing Berkeley DB we recognized that it is a com-
plex task to decompose an existing DBMS that is not de-
signed for a fine-grained decomposition. Thus, further de-
composition of Berkeley DB was not possible in reasonable
time because remaining functionality was heavily entangled.
For example, decomposition of the B-tree index functional-
ity is hardly possible without reimplementing large parts of
it.

We argue that a DBMS SPL for embedded systems has
to be designed with an adequate granularity. This means

4In Figure 1b Configuration 8 was omitted since it uses a different
index structure and cannot be compared to Configurations 1–7.

2

a) b)

0

100

200

300

400

500

600

700

1 2 3 4 5 6 7 8

Configuration

B
in

a
ry

 s
iz

e
 [

k
B

]

C

FeatureC++

0

0,5

1

1,5

2

2,5

1 2 3 4 5 6 7

Configuration

M
io

.
q

u
e

ri
e

s
 /
 s

1 complete configuration 5 without feature Queue

2 without feature Crypto 6 minimal C version using B-tree

3 without feature Hash 7 minimal FeatureC++ version using

4 without feature Replication 8 minimal FeatureC++ version using

Figure 1: Binary size and performance of different C and FeatureC++ variants of Berkeley DB.

that different levels of granularities have to be supported:
Functionality used in highly resource constrained environ-
ments should be decomposed with a fine granularity to en-
sure high variability. In contrast, functionality that is only
used in larger systems, where resources are not highly limi-
ted, may not be further decomposed or should only be de-
composed with a coarse granularity to avoid increasing com-
plexity. Thus, the granularity is the key for a trade-off be-
tween complexity and variability.

Another reason for decomposing a DBMS into features is
to impose a clean structure (e.g., for source code, documen-
tation, etc.). However, since a decomposition can increase
the complexity the benefit of such a decomposition has to
be estimated. This is not the case for features that are only
included to aggregate already decomposed features and thus
do not further increase the complexity.

To analyze the granularity of an appropriate DBMS de-
composition in more detail, we are currently implementing
a DBMS product line from scratch. The decomposition of
this FAME-DBMS prototype is depicted in Figure 2. While
we are using a fine-grained decomposition for features that
are also used in small systems (e.g., the B-tree index) we use
a coarse granularity for features like TRANSACTION which
is decomposed into a small number of features (e.g., alterna-
tive commit protocols). To further structure the DBMS pro-
duct line aggregating features are used. For example, feature
STORAGE aggregates different features but does not provide
own functionality. Using FOP this structuring can be applied
to all software artifacts including the source code.

3. AUTOMATED PRODUCT DERIVATION
Fine granularity of a decomposition of a DBMS is impor-

tant to achieve customizability but it also increases the deve-
lopment effort. Furthermore, the product derivation process
is getting more complex if there is a large number of fea-
tures. The developer of an application that uses a DBMS
has to tailor the DBMS for the specific needs of his applica-

FAME-DBMS

Storage Index

OS-Abstraction

Buffer Manager

Replacement

Memory Alloc

B+-Tree

NutOS

Win32

List

API

put

remove

update

get

add

remove

update

search

Static

Dynamic

LFU

LRU

Transaction

SQL Engine

Linux

Optimizer

Access

Data Types

Figure 2: Feature diagram of the FAME-DBMS proto-
type. Gray features have further subfeatures that are not
displayed.

tion which imposes significant configuration effort. Further-
more, the application developer needs detailed knowledge of
the DBMS domain for this configuration process. Thus an
automated product derivation is desirable.

Another important issue in embedded systems are non-
functional properties (NFPs) of a generated DBMS instance.
Often these are of interest to the stakeholder but cannot be
configured directly. For example, a developer wants to tailor
the functionality of a DBMS product line for his or her ap-
plication, but also has to stay within the resource constraints
of a given embedded device with fixed RAM and ROM size.
Other NFPs like performance or response time are also very

3

Figure 3: Automated detection of needed features with
the analysis tool.

important in the embedded domain. Thus NFPs should also
be considered in the product derivation.

In the FAME project we aim at improving tool support for
product derivation. We address the configuration complex-
ity by an approach that partially automates the configuration
process using the functional requirements of a client appli-
cation on a DBMS and furthermore integrate non-functional
constraints.

3.1 Functional Requirements
When developing client applications that use a DBMS

SPL the inherent uses relationship between application (e.g.,
a personal calendar application) and DBMS suggests to de-
rive the need for DBMS features from the application itself.

We developed an analysis tool (see Figure 3) which auto-
matically detects an application’s need for infrastructure fea-
tures by analyzing the C++ sources of the application [19].
For example, it would be beneficial to detect the applica-
tions’s need for the feature JOIN of a DBMS to remove this
functionality if it is not used. First, we statically analyze the
application’s sources which results in an application model
(a control flow graph with additional data flow and type in-
formation), abstracting from syntactic details in the source
code. Infrastructure features that are suitable for automatic
detection can be associated with queries on the application
model (model queries in Figure 3). These queries answer the
question whether the application needs a particular feature.
For example, in an application that uses Berkeley DB as a
database infrastructure, a certain flag combination used to
open a database environment indicates the need for the fea-
ture TRANSACTION, which can be formulated as one of the
abovementioned queries.

The result of this process is a list of features that need to
be included in the DBMS that the application is using. This
list can be further refined by analyzing constraints between
features of an SPL that are part of the feature model of that
application. Ideally, large parts of a feature diagram can be
configured automatically. The developer has to manually se-
lect only features that cannot be derived from the applica-

tion’s sources.
An evaluation of the approach with the refactored Berke-

ley DB (cf. Section 2.2) confirmed the assumption that the
need for infrastructure features can be derived from the ap-
plication sources in most cases. Our experiments with a
benchmark application (that uses Berkeley DB) showed that
15 of 18 examined Berkeley DB features can be derived au-
tomatically from the application’s source code; only 3 of 18
features were generally not derivable, because they are not
involved in any infrastructure API usage within any applica-
tion.

3.2 Non-functional Properties
As already stated also NFPs of an SPL are important for

embedded systems. For example, binary size and memory
consumption are critical for resource constrained environ-
ments and should also be considered in the product deriva-
tion process. To allow control over those properties our ob-
jective is to further automate product derivation. Using non-
functional constraints we can exclude variants of an SPL that
do not fulfill these constraints.

We support this by (1) measuring information about NFPs
of concrete DBMS and (2) assisting or automating the selec-
tion of features based on measured NFPs and user defined
constraints. To achieve these goals, our idea is to store as
much information as possible about generated products in
the model describing the SPL. This data is used to assist the
derivation of further products.

The ideas are part of the Feedback Approach [21], which
enables the application engineer to perform analysis (both
static and dynamic) on generated products so that knowledge
about specific NFPs can be obtained. This information can
be assigned to a complete product specification (configura-
tion properties), to a specific product feature (feature pro-
perties), or to implementation units, e.g., classes, aspects, or
components (component properties).

The result of the analysis is stored to be used during pro-
duct derivation to obtain the NFPs of a new product that is
to be derived. This can be based on a calculation of an op-
timal configuration using the properties assigned to features
or by estimating the properties based on heuristics (e.g., by
using similarities between the product to be derived and ear-
lier created instances). Calculating optimal solutions based
on constraints is known as the constraint satisfaction prob-
lem (CSP) that belongs to the complexity class NP-complete.
Currently we are using a greedy algorithm to calculate op-
timal solutions to cope with the complexity of the problem.
Furthermore, we can give hints to the user what the proper-
ties of a configured instance will be by using information
about already instantiated products.

We think that calculating an optimal solution has to be
based on both: Properties assigned to features and proper-
ties of concrete instances. First, a greedy algorithm can be
used to derive promising product configurations using fea-
ture properties. In the second step, more accurate values

4

for non-functional properties can be obtained by including
heuristics and information about already instantiated prod-
ucts and components. An optimal solution is selected by
comparing theses corrected values.

Our work on NFPs is at an early stage, however, our pre-
liminary results are promising. We have shown the feasibi-
lity of the idea for simple NFPs like code size [21] and are
developing heuristics and analysis components to address
performance of SPL instances.

4. RELATED WORK
Development of customizable data management software

has been in the focus of research for several years. Batory
and Thomas used code generation techniques to customize
DBMS [4]. They aimed at creating special language exten-
sions, e.g., to ease the use of cursors. As one of the origins
of FOP, Batory et al. focused on customizing DBMS with
Genesis [2]. In contrast to FOP as it is known today, it was
not based on OOP and its complexity decreased usability.
There have been many other developments to support ex-
tensibility of DBMS in the last 20 years. These approaches
found their way into current DBMS but cannot provide ap-
propriate customizability to support embedded systems (e.g.,
Kernel Systems). Additionally, detailed knowledge is often
needed to implement a concrete DBMS or extend existing
ones [11]. Component-based approaches are getting popular
for traditional DBMS [11, 7, 17]. These, however, introduce
a communication overhead that degrades performance and
increases memory consumption. Furthermore, limited cus-
tomizability because of crosscutting concerns does not al-
low for fine-grained customization. To overcome this limita-
tion Nyström et al. developed a component-based approach
named COMET that uses AOP to tailor the components [17].
In another approach, Tešanović et al. examined AOP for
DBMS customization [24]. They evaluated their approach
using Berkeley DB and showed customizability for small
parts of the system. Both approaches (and there is no other
approach that we are aware of) could not show concrete im-
plementations of a complete customizable DBMS nor de-
tailed evaluations. Other approaches like PicoDBMS [6] or
DELite [20] concentrate on special requirements on data ma-
nagement for resource constrained environments and not on
customizable solutions.

There is less research on automated tailoring of DBMS,
infrastructure SPLs, with their special relationship to appli-
cations built on top of them. Fröhlich takes this relationship
into account and aims at automatic configuration [12]. In
this approach the set of infrastructure symbols referenced
by the application determines which product line variant is
needed. Apart from the comparably simple static analysis
the main difference to our approach is the lack of logical
isolation between analysis and configuration, established by
a feature model.

NFPs of SPLs are getting more into the focus of current
research. Cysneiros et al. propose the modeling of NFPs

during application engineering [10]. This approach consi-
ders required non-functional behavior and adds it to design
documentation in order to make the non-functional proper-
ties traceable. Bass et al. also address NFPs during software
architecture design [1] to relate the NFPs to the system’s ar-
chitecture. Since these techniques tackle the same problem
in a different stage of development, we see our work as a
complementary approach and believe in the synergy between
them.

5. CONCLUSION
We illustrated that FOP can be used to develop tailor-

made data management solutions also for embedded sys-
tems. We applied an extractive approach to an existing
DBMS and thereby could show that FOP has no negative
impact on performance. We also presented our current work
on the FAME-DBMS product line implemented using FOP
and a mixed granularity for decomposition. The resulting
high customizability is needed for embedded devices but in-
creases the configuration space, rendering manual configu-
ration complex and error-prone. Addressing this increased
complexity, we presented two approaches that help simpli-
fying variant selection by partially automating the configu-
ration process and by providing non-functional properties
for product derivation. Although we need to extend the
approach and need further evaluation, first results are very
promising.

In future work, we plan to create complete tool support
that allows to develop SPLs optimized for embedded sys-
tems. As already outlined, we will continue working on
tailor-made DBMS and plan to extend SPL composition
and optimization to cover multiple SPLs (e.g., including the
operating system and client applications) to optimize the
software of an embedded system as a whole. Furthermore,
we think that knowledge about the application domain has
to be included in the product derivation process to automati-
cally tailor the DBMS with respect to a concrete application
scenario. For example, the data that is to be stored could be
considered to statically select the optimal index.

Acknowledgments
Marko Rosenmüller and Norbert Siegmund are funded by
German Research Foundation (DFG), Project SA 465/32-1,
Horst Schirmeier and Julio Sincero by Project SP 968/2-1.
The presented work is part of the FAME-DBMS project5,
a cooperation of Universities of Dortmund, Erlangen-
Nuremberg, Magdeburg, and Passau, funded by DFG.

6. REFERENCES
[1] L. J. Bass, M. Klein, and F. Bachmann. Quality

Attribute Design Primitives and the Attribute Driven
Design Method. In Revised Papers from the

5http://www.fame-dbms.org/

5

International Workshop on Software Product-Family
Engineering, pages 169–186. Springer-Verlag, 2002.

[2] D. Batory, J. R. Barnett, J. F. Garza, K. P. Smith,
K. Tsukuda, B. C. Twichell, and T. E. Wise.
GENESIS: An Extensible Database Management
System. IEEE Transactions on Software Engineering,
14(11):1711–1730, 1988.

[3] D. Batory, J. N. Sarvela, and A. Rauschmayer. Scaling
Step-Wise Refinement. IEEE Transactions on
Software Engineering, 30(6):355–371, 2004.

[4] D. Batory and J. Thomas. P2: A Lightweight DBMS
Generator. Journal of Intelligent Information Systems,
9(2):107–123, 1997.

[5] I. D. Baxter and M. Mehlich. Preprocessor Conditional
Removal by Simple Partial Evaluation. In Proceedings
of the Working Conference on Reverse Engineering,
pages 281—290. IEEE Computer Society Press, 2001.

[6] C. Bobineau, L. Bouganim, P. Pucheral, and
P. Valduriez. PicoDMBS: Scaling Down Database
Techniques for the Smartcard. In Proceedings of the
International Conference on Very Large Data Bases,
pages 11–20. Morgan Kaufmann, 2000.

[7] S. Chaudhuri and G. Weikum. Rethinking Database
System Architecture: Towards a Self-Tuning
RISC-Style Database System. In Proceedings of the
International Conference on Very Large Data Bases,
pages 1–10. Morgan Kaufmann, 2000.

[8] P. Clements and C. Krueger. Point/Counterpoint:
Being Proactive Pays Off/Eliminating the Adoption
Barrier. IEEE Software, 19(4):28–31, 2002.

[9] P. Clements and L. Northrop. Software Product Lines:
Practices and Patterns. Addison-Wesley, 2002.

[10] L. M. Cysneiros and J. C. S. do Prado Leite.
Nonfunctional Requirements: From Elicitation to
Conceptual Models. IEEE Transactions on Software
Engineering, 30(5):328–350, 2004.

[11] K. R. Dittrich and A. Geppert. Component Database
Systems: Introduction, Foundations, and Overview. In
Component Database Systems, pages 1–28.
dpunkt.Verlag, 2001.

[12] A. Fröhlich. Application-Oriented Operating Systems.
Number 17 in GMD Research Series. GMD -
Forschungszentrum Informationstechnik, Sankt
Augustin, 2001.

[13] T. Härder. DBMS Architecture – Still an Open
Problem. In Datenbanksysteme in Business,
Technologie und Web, pages 2–28. Gesellschaft für
Informatik (GI), 2005.

[14] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda,
C. V. Lopes, J.-M. Loingtier, and J. Irwin.
Aspect-Oriented Programming. In Proceedings of the
European Conference on Object-Oriented
Programming, pages 220–242. Springer-Verlag, 1997.

[15] C. W. Krueger. New Methods in Software Product
Line Practice. Communications of the ACM,

49(12):37–40, 2006.
[16] T. Leich, S. Apel, and G. Saake. Using Step-Wise

Refinement to Build a Flexible Lightweight Storage
Manager. In Proceedings of the East-European
Conference on Advances in Databases and
Information Systems, pages 324–337. Springer-Verlag,
2005.

[17] D. Nyström, A. Tešanović, M. Nolin, C. Norström,
and J. Hansson. COMET: A Component-Based
Real-Time Database for Automotive Systems. In
Proceedings of the Workshop on Software Engineering
for Automotive Systems, pages 1–8. IEEE Computer
Society Press, 2004.

[18] C. Prehofer. Feature-Oriented Programming: A Fresh
Look at Objects. In Proceedings of the European
Conference on Object-Oriented Programming, volume
1241 of Lecture Notes in Computer Science, pages
419–443. Springer-Verlag, 1997.

[19] H. Schirmeier and O. Spinczyk. Tailoring
Infrastructure Software Product Lines by Static
Application Analysis. In Proceedings of the
International Software Product Line Conference,
pages 255–260. IEEE Computer Society Press, 2007.

[20] R. Sen and K. Ramamritham. Efficient Data
Management on Lightweight Computing Devices. In
Proceedings of the International Conference on Data
Engineering, pages 419–420. IEEE Computer Society
Press, 2005.

[21] J. Sincero, O. Spinczyk, and W. Schröder-Preikschat.
On the Configuration of Non-Functional Properties in
Software Product Lines. In Proceedings of the
Software Product Line Conference, Doctoral
Symposium. Kindai Kagaku Sha Co. Ltd., 2007.

[22] H. Spencer and G. Collyer. Ifdef Considered Harmful,
or Portability Experience With C News. In
Proceedings of the USENIX Summer 1992 Technical
Conference, pages 185–197, 1992.

[23] M. Stonebraker and U. Cetintemel. One Size Fits All:
An Idea Whose Time Has Come and Gone. In
Proceedings of the International Conference on Data
Engineering, pages 2–11. IEEE Computer Society
Press, 2005.

[24] A. Tešanović, K. Sheng, and J. Hansson.
Application-Tailored Database Systems: A Case of
Aspects in an Embedded Database. In Proceedings of
International Database Engineering and Applications
Symposium, pages 291–301. IEEE Computer Society
Press, 2004.

[25] B. Warneke, M. Last, B. Liebowitz, and K. S. J. Pister.
Smart Dust: Communicating with a Cubic-Millimeter
Computer. Computer, 34(1):44–51, 2001.

[26] M. Weiser. Some Computer Science Issues in
Ubiquitous Computing. Communications of the ACM,
36(7):75–84, 1993.

6

A relational file system as an
example for tailor-made DMS

Konstantin Koll
University of Dortmund, Germany

Computer Science I
D-44227 Dortmund
+49-231-7948786

koll@ls1.cs.uni-dortmund.de

ABSTRACT
This paper motivates the development of tailor-made data
mangement software by presenting a relational file system that
has been written from scratch to contain only the database func-
tionality absolutely required for operation. In this paper, the back-
ground of the file system is briefly described, and it is stated why
an off-the-shelf database system was not suitable for its major
components. This application serves as a model for what highly
configurable data management software should be able to deliver.
If such a system was available at the time of development, a large
amount of work would have been saved.

1. INTRODUCTION
Today, computers are widely used to store multimedia files.
Among others, digital video, music and images are prominent
examples [10]. Unfortunately, file systems have not evolved to
accomodate the need for navigation through thousands of files:
users are still forced to create a directory hierarchy for their files.
This hierarchical scheme implicitly sorts files to certain criteria,
e.g. events, artists or projects. Users have to store their files in the
proper location then. This is very inflexible, as a file can reside in
only one folder, and thus appear in only one single context (unless
links or copies are manually created by the user). Even worse,
modern file formats also contain metadata attributes besides their
actual "payload data": many MP3 files save the artist’s name
inside an ID3 tag [13], and almost every digital still image camera
creates JPEG files with an Exif tag [9]. Since these attributes are
not stored in the data structures of the file system, but reside
inside the file body (see figure 1), they can only be accessed by
software that is aware of them, thus waiving potential benefits for
file access on the file system level. The LCARS file system [2]
presented in this paper has been created to tackle this problem.

1.1 Previous work
To improve the situation described above, various approaches
exist. Because file metadata resembles structured data that can be
managed by the means of relational algebra, many solutions in-
corporate light-weight or even fully-featured relational database
systems to store file attributes. A very prominent example for this
is the now discontinued Microsoft WinFS [12] that is built on top
of the Microsoft SQL server and was supposed to ship with Win-
dows Vista. The academic community relies on similar techniques
(e.g. [15]), among them a user-serviced keyword database [4].
Other products, mainly so called "desktop search engines" created
by major search engine vendors like Google Desktop [3] or Apple
Spotlight [1], use a full-text index.

1.2 Contribution
This paper presents the architecture of the LCARS file system [2],
which strives to combine both file systems and relational database
technology. Its key components are well-defined and registered
file formats, different applications that handle these file formats,
and domains that deliver physical storage and provide an index-
ing/retrieval system for file attributes. Each of these components
comes with their own requirements in terms of interoperability,
reliability or performance.

Due to this special application of database technology and its
deployment in a file system context, the requirements are hard to
meet for current off-the-shelf systems. Pointing out these difficul-
ties will hopefully lead to database systems that are more flexible
and thus more suitable for similar applications that fall "outside
the box".

2. ARCHITECTURE OVERVIEW
Figure 2 shows the architecture of the LCARS file system along
with its key components. LCARS is the acronym for "library with
computer assisted retrieval system". The file system is closely tied
to an operating system [2] and is implemented as an augmented
semantic file system [14]. The term "augmented" means that the
functionality of a traditional ("physical") file system is extended
by another layer of software (i.e. the semantic file system) that is
placed between user applications and the "real" file system —
very much like many existing solutions [1,3,4,12,15].

The augmented approach to developing a new file system comes
with obvious benefits. One of them is the reduced workload dur-
ing development as there is no need to create the basic file system
operations like block access and directory structures from scratch.
Another benefit is the interoperability: the augmented file system
can work on top of almost any known file system (FAT, NTFS,
ext2, …) and is not tied to a specific platform, given that no spe-
cial features of a certain physical file system are used.

Name Last access Size File body

uKgmd 01/24/2008 89237

Additional metadata

Figure 1. File, with additional attributes inside the file body.

7

2.1 File formats
Each file that can be accessed by the semantic file system layer
must adhere to a format specification, hence all files are strictly
typed. File formats introduce certain attributes to the overall data
space. These attributes may be derived from both the physical file
system (e.g. file creation date) and the file body (metadata attrib-
utes). The LCARS file system is completely oblivious to the
attributes’ origin.

The type of a file may be identified by anything from a number, a
three letter "extension" to the file name like JPG or PDF, a
FourCC, a GUID [5], or a MIME-Type string. Their properties
(e.g. the attributes they contain) are stored in an entitiy called
"registry". Unregistered file types (e.g. system files for internal
use) can only be processed through the traditional API of the
physical file system, but not by the means of the semantic file
system.

2.2 Applications
Obtaining file attributes is a common problem for any software
that relies on metadata. In the LCARS scheme of things, it be-
comes the applications’ responsibility to deliver all public attrib-
utes of the file formats under their control to the file system
through a dedicated API. This is achieved by starting an applica-
tion’s executable file with a special parameter that causes it to
silently load the files in question, extract their attributes, and
return them to the indexer.

Using the respective applications to gather file attributes is only
possible because the LCARS file system is closely tied to the

operating system, which in turn provides the API functions
needed.

Existing solutions rely on implementing file formats that are
considered important from scratch, or on third-party plug-ins to
integrate a new file type. However, it is clearly more elegant to
use the application ifself that has to implement the file format
anyway for loading and saving.

Extracting file metadata is beyond the usual scope of a database
system. Today, using an off-the-shelf system for this task requires
some kind of frontend application or middleware that feeds tuples
to the database. Basically, many existing desktop search engines
and comparable products are such frontend applications. For the
specific tasks that come with a semantic file system, a highly
configurable data management software should provide at least
the same kind of extensibility than the dedicated API described
above.

2.3 Domains
The LCARS semantic file system is comprised of so-called "do-
mains". These entities link the file system to applications and their
file formats, and also provide physical storage for files.

2.3.1 Physical storage
The LCARS file system completely virtualizes physical storage to
the operating system. Files and their attributes are presented to the
semantic file system layer regardless of their origin. This allows to
mount various storage locations directly into the file system, very
much like ODBC works for different databases systems. The most

DomainDomainDomain Domain

Application

Physical
file system

Domain

Application Application Application

Library Registry

File format File format File formats File format

Figure 2. LCARS file system architecture overview.

8

common occurance are domains that reflect directories of the
physical file system (e.g. the user’s home directory).

Some applications manage fully structured data, e.g. an address
book or a calendar application that keeps track of appointments.
There are standard file formats for these tasks, like the visit card
file (Ks`c) [6] or the iCalendar format (Kf`p) [7]. The size of such
files is usually very small (in the range on 1 KB or even less), so
the entirety of all appointments or the entire address book is dis-
tributed among a large number of tiny files. This decreases the
retrieval performance on these files (e.g. printing all addresses),
and also wastes disc space due to the minimum allocation size of
file systems (up to 64 KB in extreme cases). In conclusion, physi-
cal file systems are poorly outfitted for small files of fully struc-
tured data.

Virtualizing the physical storage of files through domains allows
to tackle this issue: special domains for fully structured data easily
store data in a relational database instead of solitary files. Tables
containg structured data are subsequently stored as one file per
table in the physical file system. In this case, domains become a
middleware between applications and database systems.

Applications typically perform file I/O through a set of API func-
tions provided by the operating system. When using the LCARS
file system, this API is provided by the different domains instead,
making the actual physical storage completely transparent not
only to the semantic file system layer, but also to applications.

So-called "virtual domains" are a special case, as they do not use
the underlying physical file system at all (rightmost domain in
figure 2). They are used to present other information as files, just
like the Unix /proc file system [11].

2.3.2 File retrieval
Physical data storage in the LCARS file system is a task for do-
mains as described in the section above. Since no other modules
have got access to the physical storage, file operations also have
to be carried out by domains — including file retrieval according
to attribute values (i.e. searching for files with certain properties).

During file retrieval, query optimization ensures that only those
domains are affected that manage files potentially fulfilling the
query. For example, if all files with a width larger than 1024
pixels are desired, a domain serving address files only does not
need to perfom a search since addresses have neither a width nor a
resolution.

3. INDEXING METADATA
Since file retrieval is a task for domains in the LCARS file sys-
tem, indexing of file attributes is also performed by them. Do-
mains face additional problems that have been tackled with a
custom indexing method.

3.1 File system environment
A major difference between professional database systems and the
tailor-made database functionality in the LCARS file system is the
storage of data: in a professional environment (i.e. on a dedicated
server), the data management system has got immediate "raw"
access to all sectors of a disc, without any file system. This is,
among many other advantages, very benefical for storing tree
structures: the nodes of a tree can be linked by simply storing
sector numbers inside the linking nodes. A sector containing a
node can be read in O(1).

When a physical file system is present, the index has to be stored
in a file since raw disc access bypassing the file system is prohib-
ited. Because the index has no notion of sector numbers any more,
tree nodes are usually linked by storing the offset inside the index
file instead of a sector number.

In addition to physically access a certain disc sector, the number
of that sector has to be determined from the offset inside the file
by the means of the file system. The performance of this operation
obviously depends on the actual file system used and its data
structures.

A simple example is the FAT file system which seems outdated,
but is still widely used today by digital cameras [8], by flash
drives and by MP3 players for compatibility reasons. The FAT file
system manages a data structure called "file allocation table",
which is basically a list of numbers; each block is assigned one
entry in this list (see figure 3). An entry contains either the num-
ber of the subsequent block, or a special code to mark, among
other conditions, the end of the file (i.e. no sucessor). Seeking to a
certain file offset requires the operating system to process this list,
starting with the first block of the file, and then continuing until
the offset is reached.

Obviously, processing the FAT requires linear time. This factor
has to be applied whenever a seek occurs, which has a devastating
effect on the performance of tree structures. Assume a B-tree with
a height of O(log n): when stored inside a file in the FAT file
system, traversing the B-tree from its root to a leaf node will
suddenly perform in O(n log n), not in O(log n).

More sophisticated file systems like NTFS or ext2 use more
elaborate data structures which perform better. NTFS uses a tree
to keep track of blocks allocated by a file, while ext2 relies on a
structure called "I-Node". They impose an additional factor of
O(log n) or O(1) respectively to any seek that occurs.

 FAT

cUcÜ

cccÜ

NTcÜ

MMOÜ

MMSÜ

MMTÜ

MMUÜ

MM_Ü

MM`Ü

MMPÜ

Start cluster

Figure 3. The file allocation table in the FAT file system re-
sembles a linked list that has to be processed in O(n) to access
a certain offset inside a file.

9

However, a penalty for any seek operation remains, so it is appar-
ent why database systems preferably run on raw drives without a
file system, and why many operating systems require a special
swap partition outside the file system for virtual memory. The
augmented approach of the LCARS file system has the drawback
that it is forced to run on top of an existing physical file system,
so raw disc access or a special partition are no viable options in
this case.

3.2 Partially populated data space
Another property of the file system environment, and more spe-
cifically file metadata, is the distribution of file objects in the
overall data space. Each attribute to be indexed can be considered
a dimension of the data space, so d attributes would form a d-
dimensional hypercube: Ω = A1 × … × Ad if all attributes are
mapped and normalized to the range of [0…1].

However, the data space formed by file metadata is usually not a
d-dimensional hypercube; in fact, it is just a subset. The hyper-
cubic data space allows that each point inside the hypercube can
be populated, i.e. get files assigned. This assumes that all attrib-
utes are present in all files and are independent of each other. But
this is not true for files, because certain attributes are present in
some file formats, but not in others. An example for this is the
width and height: both are present in images and video files, but
not in audio files. From a geometric perspective, this renders
certain regions in the hypercube void, i.e. they cannot be popu-
lated by any item.

Figure 4 shows an example of such a sparse data space. Let there
be two file types, one containing the attributes A1 and A3, and the
second one containg A2 and A3. The resulting hypercube would be
Ω = A1 × A2 × A3. Since no file contains both A1 and A2, the real
metadata space consists only of the two surfaces A1 × A3 and
A2 × A3.

The resulting data space can be described for arbitrary file meta-
data. Let there be k different file formats. In addition to the n
attributes A1 to An that shall be common for all file formats, each
file type j shall have m additional attributes named Bj,1 to Bj,m.
Then the partially populated metadata space can be defined as:

U
k

j
mjjn j

BBAA
1

,1,1
=

×××××=Ω (1)

The index structure developed for the LCARS file system takes
advantage of this sparsity by using a "master index" for the attrib-
utes A1 … An, and one additional "slave index" for each of the k
file formats to hold their attributes Bj,1 … Bj,m. This saves memory
in comparison to one large index table that has to store krii for
attributes not present in a given file, and also reduces the amount
of data that needs to be retrieved from the index if any slave in-
dexes are irrelevant to a given query.

3.3 The master/slave index
The indexing method employed by various domains in the
LCARS file system benefits from the partially populated data
space and is immune to any impact from the file system environ-
ment. The so-called "master/slave index" is comprised of a single
master index that contains all attributes common to all file formats
in that domain (e.g. file name and type). For each file format, an
additional slave index with all remaining attributes of that type is
stored. Splitting the attributes of a given file makes explicit use of
the partially populated data space, and avoids storing krii for
attributes that are not defined by the file format.

A
1 A

2

A
3

Figure 4. A hypercubic data space, with data objects
populating the filled surfaces only.

Master index

Slave index for images

Slave index for MP3s

Filename Type ... Filename Width Height Filename Genre Artist
^Kgmd= Image KKK= ^Kgmd= 1024 768 _KjmP= Hip Hop ...
_KjmP= MP3 KKK= `Kgmd= 640 480 aKjmP= Soul ...
`Kgmd= Image KKK= bKgmd= 2048 1536
aKjmP= MP3 KKK=
bKgmd= Image KKK=

Figure 5. Sample master/slave index for image and MP3 files.

10

A simple heap file is used as internal organisation for each index
table. The index is built by appending new tuples at the end of the
master heap file and the appropriate slave heap file for each new
file. This ensures that the order of tuples is maintained across
tables. From the perspective of relational algebra, the master
index and its associated slave indexes each represent a relation.
Query processing in a master/slave index is thus reduced to a join
operation of these relations, e.g. j^pqbo < fj^dbp or
j^pqbo < jmP. Since simultanous appending of tuples main-
tains the order across tables, the merge join algorithm incor-
porating simultanous sequential scanning of all index tables can
be used to compute these joins in O(n). After joining a tuple from
the master index with the appropriate slave index, it has to be
decided whether the file is part of the search result or not.

The master/slave index has been implemented from scratch as
most off-the-shelf systems are not able to recognize the order of
tuples across different index tables. The only exception known to
the author is the Berkley DB that can be equipped with custom
sorting functions and cursors, and is thus suitable to store a mas-
ter/slave index. This kind of custom expandability can be consid-
ered crucial for special database applications like indexing file
metadata.

4. SUMMARY
This paper presents a file system that offers database functionality,
and also employs relational technology itself to index file meta-
data. This is a very unusal setting for database systems. Required
features, such as application connectivity and indexing data struc-
tures that perform well inside a file system, had to be imple-
mented from scratch as they were missing in most standard data
management software.

5. REFERENCES
[1] Apple Corporation. Spotlight.

http://www.apple.com/macosx/features/spotlight/
[2] DESKWORK Operating System.

http://www.deskwork.de/

[3] Google Inc. Google Desktop Features.
http://desktop.google.com/features.html=

[4] Gorter, O. 2004. Database File System - An Alternative to
Hierarchy Based File Systems. Master thesis, University of
Twente, 2004

[5] Internet Engineering Task Force 2005. A Universally
Unique Identifier (UUID) URN Namespace. In Request For
Comments 4122. http://www.ietf.org/rfc/rfc4122.txt

[6] Internet Engineering Task Force 1998. A MIME Content-
Type for Directory Information. In Request For Comments
2425. http://www.ietf.org/rfc/rfc2425.txt

[7] Internet Engineering Task Force 1998. Internet Calendaring
and Scheduling Core Object Specification (iCalendar). In
Request For Comments 2445.
http://www.ietf.org/rfc/rfc2445.txt

[8] Japan Electronics and Information Technology Industries
Association 1998. Design rule for Camera File system. In
JEITA-49-2 1998. http://www.exif.org/dcf.PDF

[9] Japan Electronics and Information Technology Industries
Association. 2002. Exchangable image file format for digital
still cameras: Exif. Version 2.2, JEITA CP-3451, April 2002

[10] Kersten, M. et al. 2003. A Database Striptease or How to
Manage Your Personal Databases. In Proceedings of the
29th VLDB Conference, Berlin 2003.
http://www.vldb.org/conf/2003/papers/S34P01.pdf

[11] Killian, T.J. 1984. Processes as files. In USENIX Associa-
tion 1984 Summer Conference Proceedings, 1984

[12] Microsoft Corporation. Windows Vista Developer Center:
Chapter 4, Storage.
http://msdn2.microsoft.com/en-us/library/aa479870.aspx

[13] Nilsson, M. ID3v2 - The Audience is informed.
http://www.id3.org/

[14] Object Services and Consulting Inc. Semantic File Systems.
http://www.objs.com/survey/OFSExt.htm

[15] Shoens, K. et al. 1993. The Rufus System: Information
Organization for Semi-Structured Data. In Proceedings of
the 19th VLDB Conference, Dublin 1993.
http://www.vldb.org/conf/1993/P097.PDF

11

Flexible Transaction Processing in the Argos Middleware

Anna-Brith Arntsen
Computer Science

Department
University of Tromsoe

9037 Tromsoe, Norway
annab@cs.uit.no

Mats Mortensen
Computer Science

Department
University of Tromsoe

9037 Tromsoe, Norway
mats@stud.cs.uit.no

Randi Karlsen
Computer Science

Department
University of Tromsoe

9037 Tromsoe, Norway
randi@cs.uit.no

Anders Andersen
Computer Science

Department
University of Tromsoe

9037 Tromsoe, Norway
aa@cs.uit.no

Arne Munch-Ellingsen
Computer Science

Department
University of Tromsoe

9037 Tromsoe, Norway
arneme@cs.uit.no

ABSTRACT
Transactional requirements, from new application domains
and execution environments, are varying and may exceed
traditional ACID properties. We believe that transactional
middleware platforms must be flexible in order to adapt to
varying transactional requirements. This is to some extend
demonstrated within Web service environments where sup-
port for both ACID and long-running business transactions
are provided. This paper presents an extension along the
path to flexible transaction processing in the form of the
Argos Transaction Layer. As opposed to present systems,
the Argos Transaction Layer offers the potentiality to hot-
deploy an extensible number of concurrently running trans-
action services, each providing different transactional guar-
antees. Currently, the Transaction Layer offers two ser-
vices, one serving the ACID properties of distributed trans-
actions, and one supporting long-running business transac-
tions based on the use of compensation.

Categories and Subject Descriptors
H.4 [Information Systems Applications]: Miscellaneous;
D.2.8 [Software Engineering]: Metrics

General Terms
Architecture, configuration, management

Keywords
Flexible transactional middleware, Adaptability, Component-
based system

1. INTRODUCTION
New application domains, including workflows, coopera-

tive work, medical information systems, e-commerce, and
web services environments, have transactional requirements
that may be varying and evolving, exceeding the traditional
ACID properties. An example is a travel arrangement appli-
cation issuing a number of sub-transactions: booking flights,
hotel rooms, theater tickets, and car rentals. This is a so-
called long-running transaction, which, if structured as an

ACID transaction, will impede both performance and con-
currency of a system. This transaction performs better if
structured as a non-ACID transaction revealing intermedi-
ate results upon commit, and by using compensating trans-
actions in case of failure (i.e. as Sagas [9]). A medical in-
formation system is another example, in which patient jour-
nals, radiographs and spoken reports may be stored over a
number of heterogeneous sites. Medical personnel handling
patient information may have either ACID or beyond-ACID
requirements related to for instance response time, real-time
guarantees or mobility issues.

The characteristics of extended transaction models [6] sup-
port our conviction that the ”one-size fits all” paradigm is
not sufficient and that a single approach to extended trans-
actions will not suit all applications. To some extend, the
”one-size fits all”contradiction is applied within Web services
domains supporting two transaction services with different
transactional guarantees.

However, it is our belief that transaction processing envi-
ronments with two services fail to provide sufficient support
for wide areas of applications. We designed ReflecTS [2] to
fill the gap between required and provided support for flexi-
ble transaction processing, which offers an extensible number
of concurrently active transaction services.

To demonstrate the flexibility enabled by ReflecTS, this
paper presents a realization of a flexible transactional mid-
dleware platform based on the architecture of ReflecTS. The
result is the Argos Transaction Layer, implemented as part
of the Argos middleware container [17, 16] 1. The Argos

Transaction Layer possesses the ability to embed an exten-
sible number of concurrently running transaction services,
each supporting different transactional guarantees. Cur-
rently the Transaction Layer provides two transaction ser-
vices, one assuring the ACID properties of distributed trans-
actions, and one supporting long-running business transac-
tions based on the use of compensation. This layer adds
flexible transaction execution to the Argos middleware in
that an application can choose a suitable transaction ser-
vice from the services available in the Transaction Layer,
and that concurrently active transaction services are sup-
ported. The transactional support in Argos is configurable

1http : //argos.cs.uit.no

12

in that new services can be dynamically deployed during run
time.

This paper is organized as follows. Section 2 presents re-
lated work and section 3 background on the ReflecTS plat-
form. Section 4 follows with a presentation of the basic
functionalities of the Argos middleware. Section 5 presents
Argos Transaction Layer and an evaluation of the work.
Finally, section 6 draws a conclusion and give directions for
future work.

2. RELATED WORK
Traditional transactional middleware like Microsoft Trans-

action Server (MTS) [5], Sun’s Java Transaction Server (JTS)
[19] and CORBA’s Object Transaction Service (OTS) [10]
provide merely one transaction service supporting the ACID
properties of distributed transactions.

The CORBA Activity Service Framework [13] extends
the traditional approach by presenting an abstraction sup-
porting various extended transaction models by a general-
purpose event signalling mechanism. These ideas are also
adopted by the J2EE Activity Service 2 framework, which
is the J2EE programming model of CORBA’s Activity ser-
vice.

Other approaches found within Web services domains pro-
vide support for more than one transaction service. The
Web services specifications, WS-AtomicTransactions and WS-
BusinessTransactions [12], and the OASIS BTP [14] specifi-
cation defines two services, one serving ACID transactions
and the other serving long-running activities. The Arjuna
Technologies [15] has defined the Arjuna Transaction Service
and the Arjuna Web Services Transaction implementation as
part of the JBoss Transactions 3. The JBoss Transactions
solution implements a transaction layer supporting atomic
and long-running business transactions as part of its spec-
ifications. The GoTM 4 initiative by ObjectWEB aims to
be the next generation transaction framework supporting a
wide set of core services to build various personalities com-
pliant to advanced transaction models.

By extending the traditional approaches, different extended
transaction models [7] will be supported. To represent dif-
ferent transaction models the ACTA language [4] provides a
general formalisms for describing advanced transaction mod-
els. Another formalism framework is the aspect-oriented
language KALA [8], which extends the ACTA approach by
adding a higher level of abstraction to achieve precise spec-
ification of transaction models.

The work presented in this paper contrasts related work in
several matters. First, by supporting an extensible number
of concurrently running transaction services, each exhibiting
different transactional guarantees, and next, by providing
run-time support for adding and/or removing services.

3. REFLECTS
The flexible transaction processing framework ReflecTS

[2][3] has been designed to bridge the gap between required
and provided support for flexible and adaptable transaction
processing. ReflecTS provides flexibility by embedding an
extensible number of transaction managers (TMs), each one
offering different transactional guarantees.

2http : //sdlc− esd.sun.com/ESD24/JSCDL/
3http : //labs.jboss.com/jbosstm/
4http : //jotm.objectweb.org/TP related.html

Framework

Base
Info

TSActivate TSInstall

RM

ReflecTS Framework

TM
TM

Program
Application ReflecTS

Admin

IReflecTS

i.e. XA−compliant interface

Figure 1: ReflecTS overview

The ReflecTS architecture is presented in figure 1 showing
the TM Framework embedding TMs. The TSInstall module
handles requests for TM configurations and resource man-
ager (RM) registrations. These activities involves a consec-
utive update of the InfoBase keeping appurtenant descrip-
tors related to the TMs and RMs (i.e. about transactional
mechanisms and communication abilities).

The IReflecTS interface defines the interaction between
the application program (AP) and ReflecTS, and is called to
demarcate global transactions and to control the direction of
their completion [2]. Via this interface, applications defines
a transaction’s transactional requirements and information
about its requested RMs.

Based on the transactional requirements from the appli-
cations and the descriptors of available TMs, TSActivate
selects a suitable TM for each particular transaction execu-
tion. Subsequently, and before the transaction is eventually
started, a TS responsible for the coordination of the execu-
tion of the transaction is composed out of the selected TM
and the requested RMs. A TS is responsible for coordinat-
ing the execution of a distributed transaction according to
its provided properties. This is done in collaboration be-
tween the TM and the set of RMs, where the TM manages
the global transactions by coordinating commit and recovery
and the RMs perform local transaction control and partic-
ipates in global commit and recovery protocols.

Tightly related to the transaction service composition
and activation procedures are evaluation of compatibility.
In order to assure the requested transactional requirements,
committing the composition phase involves successful eval-
uation of Vertical Compatibility [3] between each pair of
TM and RM . Vertical Compatibility involves defining
matching transactional mechanisms (commit/recovery and
concurrency control mechanisms) and communication abili-
ties in each TM - RM pair.

Transaction service activation must be synchronized to as-
sure that the properties of every transaction and each active
TS sustain, involving evaluation of Horizontal Compatibility.
This evaluation assures that any two services competing for
the same resources can be concurrently active only if they
are compatible. Compatible services does not violate the
results and the consistency of the transactions executed by
the individual services.

4. BACKGROUND ON ARGOS
Argos is a component-based middleware container for the

13

Service

������
������
������
������

������
������
������
������

RMI

Argos and System Services

JMX Connector System Service

Hibernate System Service

Jetty System Service WS System Service

Derby Hibernate

Jetty

Service

Deployer
Hot

Naming

Component
Manager

Internet

XML−RPCSOAP

Argos Core

Component Service Uses Core Event

Connector

Config

Figure 2: Argos Core and System Services

development of personal middleware systems [17, 16] 5. Its
functionalities are realized as a set of JMX (Java Manage-
ment Extensions) DynamicMBeans 6 components. This com-
ponent model defines an architecture for management of dis-
tributed resources (local or remote), which is extended in
Argos with elements related to component and service meta-
models, component lifecycle and component dependency han-
dling.

Figure 2 pictures the minimum configuration defining the
Argos Core, which includes the extended JMX component
model, a set of supported annotations, and core system ser-
vices such as bindings (bindings to information sources),
naming service and persistency. Persistency services in-
cludes accessing DBMS systems and Web services. The
Web services functionalities are represented by the Jetty
system service and the WS System Service providing nec-
essary facilities for an Argos application to implement Web
services. The DBMS functionalities are performed by Hiber-
nate 7 and Derby, through where applications interact with
the databases without relying on any sort of SQL.
Argos applies annotations as provided by Java 8. Anno-

tations are included in the service code as metadata tags
preceded by a @ and are used in combination with dynamic
generation of components increasing the ease of extending
component functionality and code maintenance. Argos com-
ponent model builds on Plain Old Java Objects (POJO),
which together with annotations are instantiated as JMX
Dynamic MBeans by the container. A deployment descrip-
tor defines dependencies to system and user services, and
Argos uses reflection to inspect these descriptors for known
annotations. Argos assures that all dependencies are met
before a service is started, and the reflective abilities ”glue”
the services together.

The Argos core supports ”Hot deployment”, which gives a
flexible structure for configurations of services without de-
manded recompilations. The HotDeployer component ac-
complishes this by deploying services and applications dur-

5http : //http : //sourceforge.net/projects/jargos/
6http : //java.sun.com/javase/technologies//
7http : //www.hibernate.org/
8http : //java.sun.com/j2se/1.5.0/docs/guide/language/−
annotations.html

TravelAgent

Transaction Layer

WS Abstraction LayerHibernate

Enlist Enlist

Web Service Transaction Manager − WS_TM

Other Transaction Managers

Database Transaction Manager − DB_TM
Get Service

Figure 3: High-level model of the Argos Transaction
Layer

ing run-time without restarting the container. Only a mini-
mal modification of existing files is required. When a Argos

service or application is loaded into the system as a POJO
component, the HotDeployer component is initiated, pro-
ducing MBeans representing the service.

Present Argos services [16] access local and external re-
sources (both DBMS systems and Web services) by using
the Hibernate System Service and the WS (Web Service)
System Service. The WS System Service makes is easy for
an application programmer to create a new Web service by
using the @Webmethod annotation.

An Argos Container is an extension of the Argos Core,
embedding both system and user services. In the container,
deployed system and user services are developed to take ad-
vantage of the constitutional capabilities of the Argos core.
For example, to access and store objects in a database, user
applications applies the functionalities of the Hibernate sys-
tem service. The Argos Transaction Layer presented in the
following, is realized in a Argos Container.

5. ARGOS TRANSACTION LAYER

5.1 Introduction
The Argos Transaction Layer implements some of the core

functionalities described in the ReflecTS architecture. The
basic functionalities of the Argos Transaction Layer are as
follows: 1) Initial and run-time configuration of TMs, 2)
An extensible number of concurrently running TMs, each
exhibiting different transactional guarantees, and 3) TM se-
lection.
Argos Transaction Layer is implemented as a system ser-

vice, currently embedding two different TMs with different
transactional guarantees: 1) Database Transaction Manager

(DB_TM), supporting atomic transactions, and 2) Web Services
Transaction Manager (WS_TM) supporting long-running Web
services transactions. A TravelAgent application is imple-
mented and deployed as a user service within the Argos

container. The components of Argos Transaction Layer and
the TravelAgent application are depicted in Figure 3 and
described in the following.

5.2 Travel Agent Application
The TravelAgent application supports the arrangement of

a journey involving a number of subtasks: flight reserva-
tions, booking of hotel rooms, car reservations, and booking
of theater tickets. These services are exposed by the differ-
ent companies either as Web services or DBMS application
systems, where the latter supports the TX-interface [11]. A
high-level overview of the TravelAgent application is pic-
tured in figure 4.

14

TX−interface standard

FlightManager

TravelBooker

CarManager TheatreMgrHotelManager

TravelBooking
Client

DB DB DBDB

Argos Container

Access to Web services and DBMS’s

Norwegian
Airlines

Best Western
Hotel

Avis Car Rental Entertainment
Booking Mgr

Figure 4: Model of the TravelAgent application

The TravelAgent application includes a TravelBooker com-
ponent, which is responsible for demarcating transaction
boundaries, specifying compensating transactions, and for
interacting with the TravelBooking client and the managers
of the underlying resources. The TravelBooker provides an
interface to the clients (presented in section 5.3). This inter-
face includes methods for initiating reservations performed
by the managers.

The responsibilities of the application managers; Flight-,
Hotel-, Car and Theater-manager, are to interact with Web
Services and DBMS systems via the abstraction layer. The
abstraction layer provides transparent access to underlying
resources and ensures they are enlisted with the appropriate
transaction manager and the correct transaction.

The TravelBooking client perform TM selection based
on the requirements of the transaction, strict or relaxed
atomicity, which in turn activates either the DB_TM or the
WS_TM respectively. The WS_TM manages transactions involv-
ing both databases and Web Services while assuring relaxed
(or semantic) atomicity based on the use of compensation.
The DB_TM coordinates distributed transactions by the use of
two-phase commit (2PC) protocol according to the X/Open
DTP model [11]. By so means, DB_TM assures atomic com-
mit of transactions running at DBMS systems. Inherent in
the 2PC protocol is the ability to perform one-phase commit
of transactions, signifying that DB_TM may work toward Web
services when relaxed atomicity is a requirement.

5.3 Transaction Layer
The system components of the Argos Transaction Layer

are implemented in the Argos middleware. Its components
including the transaction managers, WS_TM and DB_TM, and
the components of the TravelAgent application, are illus-
trated in figure 5.

The Transaction Layer offers the generic application pro-
gramming interface (API) presented in table 1. This API,
which follows the Java Transaction API (JTA) specification
9, allows the applications to retrieve, select and use a TM
of their choice.

9http : //java.sun.com/products/jta/

Table 1: Transaction Layer API

public UserTransaction getUserTransaction(String id)
public TransactionManager getTransactionManager()

By means of the Hot Deployment facility, the pool of avail-
able TMs is adaptable to requirements from applications
and from the environment. TM implementations are con-
strained to implement the generic interfaces listed in table
2:

Table 2: TM Generic Interface
javax.transaction.TransactionManager
javax.transacion.UserTransaction
argos.transaction.TransactionCoordinator
argos.transaction.Transaction

Multiple applications can use the same TM without any
concurrent conflicts, which is accomplished by creating a
new TM object for each thread. If a thread calls getUser-
Transaction() multiple times it will always receive the same
object, but multiple threads will have different TMs and,
thus, different UserTransaction() object. Each TM and
each transaction is uniquely identified.

5.3.1 Resource Enlistment
Database and Web services resources are automatically

enlisted and registered with the correct TM when such re-
sources are used in a transaction context. The TM respon-
sible for coordinating the transaction makes sure that all
enlisted resources either abort or commit.

Hibernate and WS Abstraction Layer facilitates access to
DBMS and Web services respectively. Hibernate is a part
of the Argos core and the WS Abstraction Layer is a part
of the Argos Transaction Layer implementation. Enlistment
via Hibernate is facilitated by adding a custom connection
provider suitable for each accessible database resource. The
WS Abstraction Layer provides an abstraction to access un-
derlying resources, which makes the services easier to use
compared to access via WS System Service and SOAP. The
main intention is to make this interaction similar as with
regular Java objects. This is done by providing an API to
the applications. Through this interface, applications spec-
ifies parameter values, which must me valid SOAP types,
including an endpoint address (specified as an annotation),
the operation name, parameter types and a return type. Ad-
ditionally, Argos applications provides a description of each
Web service, containing information necessary for the ab-
straction layer to create a Java object representing the Web
service. The benefits of the WS Abstraction Layer are as
follows: 1) Applications can use Web services in the same
way they use any other object. 2) The abstraction layer will
hide the type mapping so the application does not have any
knowledge of SOAP at all.

5.3.2 Database Transaction Manager
The Database Transaction Manager (DB TM) coordinates

the execution of distributed transactions over multiple data-
bases according to the X/Open DTP model [11]. The scheme
of DB_TM assures atomicity where either all or none of the

15

Select

Service

Deployer
Hot

Naming

Component
Manager

WS Abstraction Layer

WS_AL

DB_TM

Transaction Layer

WS_TM

TravelAgent Application

Booker

Travel

Services

System

Argos Core

Service
Config

TravelBooking
Client

Argos Container

Figure 5: Integrating Transaction Service and Trav-
elAgent Components in the Argos Container

tasks in a transaction commit. Concurrency is controlled by
keeping the resources locked during the whole operation.

To support the experiments of this project, the Java Open
Transaction Manager (JOTM) [18] providing database trans-
action support where selected. JOTM implements the three
first interfaces from table 2. Initially, JOTM is compatible
with the standard JTA interface, making it a perfect match
for the rest of the system.

5.3.3 Web Service Transaction Manager
The Web Service Transaction Manager (WS TM) pro-

vides the Argos applications with the abilities to use mul-
tiple Web services and databases in the same application.
The WS_TM implements a one-phase commit protocol [1] and
assures relaxed atomicity based on the use of compensation
[9]. Each Web service interface is adapted to conform to
identical interfaces, which are exposed to the managers via
the WS Abstraction Layer.

Table 3: Register Compensation

registerCompensation(String func, Object... params)

Every Web service operation defines a compensating oper-
ation as defined in table 3. The implementations of compen-
sating activities are performed based on information given
by the applications. Argos applications register compensa-
tion operations after having performed a Web service opera-
tion. When Argos load the application, it saves this informa-
tion for use in case of transaction failure and a subsequent
rollback. If the original operation fails, Argos simply call
the compensating operation registered. For simplicity, we
assume that each underlying Web service implements and
exhibits the same API. This scheme will work for all Web
services providing the ability to register compensating oper-
ations.

5.4 Evaluation
Our tests with Argos Transaction Layer and the Trav-

elAgent application show that i) the middleware platform
can offer different transaction services to the application, ii)
new transaction services can be deployed in the Transaction

Layer during run time, and iii) the platform can support
concurrently active transaction services. These are key fea-
tures in the ReflecTS architecture and important for provid-
ing the required flexible transaction execution environment.

The Argos middleware container was chosen as our core
middleware platform because of its extensible architecture
for easy deployment of system services during runtime. From
our tests with Argos Transaction Layer we find Argos to
be a suitable platform for implementing a layer for flexible
transaction execution.

The Hot Deployment facility supported by Argos makes
transaction service deployment during runtime possible. At
present, we have only two transaction services available for
use in the Transaction Layer. These are the DB Trans-
action Manager (”DB TM”), supporting traditional ACID
transactions, and WS Transaction Manager (”WS TM”), sup-
porting long-running transactions based on the use of com-
pensation. However, more transaction services offering other
types of transactional properties may be developed and de-
ployed into the Transaction Layer.

When testing Argos Transaction Layer we started the
system with one available transaction service. Initially, the
transactional properties of this service represented the only
transaction execution possibility in Argos. During run time
the second transaction service was deployed, and the trans-
actional properties P of both services, i.e. P (DB_TM) and
P (WS_TM), were available to the application. The require-
ments of each issued transaction determined which one was
selected to control its execution. By the use of the WS_TM

manager, transaction failure and recovery was handled by
the initiating of compensating operations.

Testing of the Argos Transaction Layer and the Trave-
lAgent application have demonstrated concurrency among
the two deployed transaction managers. Both managers can
be concurrently active coordinating transaction executions.
This is achieved by instantiating separate objects for each
thread. As the two transaction managers may cause conflict-
ing transaction executions when controlling execution on a
common data set, we constrained the use of the managers so
that DB_TM and WS_TM managed transactions accessing sep-
arate data sets. Compatibility between concurrent transac-
tion services is part of our ongoing work, and the results of
this will be reported elsewhere.

One of the key features of this work has been enlistment
of the transactional resources with the appropriate man-
ager. This standard middleware functionality simplifies the
programming model for applications. To implement this
feature, Argos had to implement abstractions for access-
ing transactional resources. For the case of the database
resources, this was automatically performed by means of a
custom connection provider for Hibernate. For the case of
the Web services, this was performed by the WS abstraction
Layer.

During this work, the performance of the system were not
considered. The main emphasize has been given transaction
service deployment, achieving concurrency among the ser-
vices and automatic enlistment of transactional resources.

6. CONCLUDING REMARKS AND FUTURE
WORK

Varying transactional requirements from new application
domains demand flexible and adaptable transaction process-

16

ing assuring properties exceeding the traditional ACID prop-
erties. The primary goal for this project was to develop
a Transaction Layer for the Argos middleware container
providing flexible transaction processing as proposed in the
ReflecTS architecture [2]. This project has proven the Argos
Transaction Layer as a proper host for concurrently run-
ning transaction services. Currently, the Transaction Layer
provides two transaction managers: one assuring the ACID
properties of distributed transactions, and one assuring re-
laxed atomicity based on the use of compensating activi-
ties. A TravelAgent application has demonstrated transac-
tion manager selection and concurrent usage while assuring
the transactional requirements. This application initiates
transactions both at regular DBMSs and at Web services.
In addition, we have shown that, by means of the Hot De-
ployment feature, configurations of transaction managers are
feasible without system recompilation.

As part of current work, we are working on formalisms
related to evaluation of compatibility, both to assure trans-
actional requirements and to assure the properties of each
active transaction and transaction service. These are issues
solving problems when incompatible transaction services are
accessing overlapping data. Further, this version of Argos

Transaction Layer applies service selection at the applica-
tion layer. Evidently, this increases the complexity of the
applications while offloading the complexity of the middle-
ware. In order to improve and ease the development of ap-
plications, we will, during future work add mechanisms for
service selection at the middleware layer (as proposed by
ReflecTS).

7. REFERENCES
[1] Maha Abdallah, R. Guerraoui, and P. Pucheral.

One-phase commit: Does it make sense? In ICPADS
’98: Proceedings of the 1998 International Conference
on Parallel and Distributed Systems, page 182,
Washington, DC, USA, 1998. IEEE Computer Society.

[2] Anna-Brith Arntsen and Randi Karlsen. Reflects: a
flexible transaction service framework. In ARM ’05:
Proceedings of the 4th workshop on Reflective and
adaptive middleware systems, pages 1–6, Grenoble,
France, 2005. ACM Press.

[3] Anna-Brith Arntsen and Randi Karlsen. Transaction
service composition, a study of compatibility realted
issues. In Procceding of the 9th International
Conference on Enterprise Information Systems, ICEIS
2007, Funchal, Madeira - Portugal, June 2007.

[4] Panos K. Chrysanthis and Krithi Ramaritham. Acta:
A framework for specifying and reasoning about
transaction structure and behavior. In Proccedings of
the 1990 ACM SIGMOD international conference on
Management of data, May 1990.

[5] Microsoft Corporation. The .net framework, 2000.
http://www.microsoft.com/net/.

[6] Ahmed K. Elmagarmid, editor. Database Transaction
Models for Advanced Applications. Morgan Kaufmann
Publishers, 1992.

[7] W. Litwin Elmagarmid A., Y. Leu and
M. Rusinkiewicz. A multibase transaction model for
interbase. In Proceedings of the 16th International
Conference on VLDB, pages 507–518, 1990.

[8] Johan Fabry and Theo D’Hondt. Kala: Kernel aspect

language for advanced transactions. In SAC ’06:
Proceedings of the 2006 ACM symposium on Applied
computing, pages 1615–1620, Dijon, France, 2006.
ACM Press.

[9] Hector Garcia-Molina and Kenneth Salem. Sagas. In
Proceedings of the 1987 ACM SIGMOD international
conference on Management of data, pages 249–259,
San Francisco, California, United States, 1987. ACM
Press.

[10] Object Management Group. Corba services,
transaction service specification, version 1.4, 2003.
http://www.omg.org/technology/documents/formal/
transaction service.htm.

[11] Open Group. X/open distributed transaction
processing: Reference model, version 3, 1996.

[12] W3C Working Group. Web services architecture,
working draft, February 2004.
http://www.w3.org/TR/ws-arch/.

[13] I. Houston, M. C. Little, I. Robinson, S. K.
Shrivastava, and S. M. Wheater. The corba activity
service framework for supporting extended
transactions. Lecture Notes in Computer Science,
2218, 2001.

[14] Mark Little. Transactions and web services. Commun.
ACM, 46(10):49–54, 2003.

[15] Arjuna Technologies Ltd. Web services transaction
management (ws-txm) ver1.0. 2003.
http://www.arjuna.com/library/specs/ws caf 1-
0/WS-TXM.pdf.

[16] Arne Munch-Ellingsen, Anders Andersen, and
Dan Peder Eriksen. Argos, an extensible personal
application server. In Proceedings of the Midddleare
2007, Newport Beach,Orange County, California,
USA, November 2007. ACM Press.

[17] Arne Munch-Ellingsen, B. Thorstensen, D.P. Eriksen,
and Anders Andersen. Building pervasive services
using flock sensor network and flock container
middleware. In Proceedings of the IEEE 21st
International Conference on Advanced Information
Networking and Applications, AINA 2007, Niagara
Falls, Ontario, Canada, 2007.

[18] Open Source Middleware Object Web. Java open
transaction manager, 2005. http://jotm.objectweb.org.

[19] Allarmaraju Subhramanyam. Java transaction service,
1999.
http://www.subrahmanyam.com/articles/jts/JTS.html.

17

���������
������������	���
����������
��������������������
��
��������������

�����������	���
�������	�������������������������������
����

	����	����	�����������������������������������
��	������

������

�
������
���� �����������
!����
�����������
��

�	���	���������

�����
��"���
���������"������������������
��������	����������

��
���������
������������
��"���
���#�	��
���������������
��"�����

�����������	������������
���	�����
����
��"���
��$	�����#������
����

�	�
���������������
��
�����	�����	����������������
���������������

����� ��%�
�����
� ����
����������� ������������
� ��
��� ��� ������

��
�������� �	���������������$	�
�� ���	��&��
����� ������������ ��

���� ����"������ ������
������
������
�
���� ���'�(!� ������

�$)�*+,�����������������������	�����������-

�� 	
������

$	��	������	�����
������������������������
��
����
��"����������"�

��'�(
��$	�����������
������������
��	������
��������
�����&����

����������������	�
������������������������!������
��������
��$	����

������
�������
� ���� ������������ �������� ���������� ���� ����������

�'�(
���������������	�
	��������������#���������
��.���"�������

�������� ���� �������"�� ����
����������������� ��������������������

��������
�*--,�������
������

��
��

��������
������	�����������

���������
�����
��
���$������������������������
��	����������������

�������	��������	��������
���
�����	����������
������	�����������
���

�	�� ��������� ���� ���
������� �� "������
��������� '���� �����
�� ��

���������"��������
���������������	��
�
���	�
����������
���
���#�

	�������	�
	���
����������#���������
�������
���������������
���������

������%�
�����
��

'����
�����������������
��
�������
������"������������
��������

�������������*/�-0,����
�������
��������	�
����
������������
������

������
�1���
���
�����
��������
����������"���2�������&��
�
�1����

��������������"�������
�
����������"�
���������������	���
���&���

���
�����	��	�
����&��������
���������

������	�"����������������

�������"�����������
��������"�
������������

����������
����
��
��	�

� �����������
��������"�������������
����������������������������

���	�"������������"�������������������
�
���
���������� ����
��

�������������
� *3,��.��������� ����
� �
���� �	�� ��
�������
� �
����

	���
��	���������
�������������������� ����
�����������
�����������

�����
���������������'�(�
��	��	����	�������������������������#�

�	��
��������������������������

��
�
��������
�������������

4��(������ 5������#�������	������������������������
��������������	�

���������	��������
���
�������������

��
���������������������	�

���	���
�����������
��	�����������#�	��
������������������
���

(������ 6�� 7
��
� �	�� �������� ��� �����������
�� ���
����	� ��

(������ 8�	��������	��"������

��������
������-5��������������

-�$	�
������	�
����������������
�������������	��9������:�
����	�;������
�������;9!�

����������	
���

���������
���
��	��
����
���	�������
����������	
��
�

���������������������
������

�������������
���������������

�����
������������������
� �

!����"
� ��
���������������������
������

�������������
���������������

���� �������������������
� �

������������������'�(�
�����
����	��������
�
�����������������

.������$)������$���
�������)������������*+,!�
��"����
�����
����

���� ���� ��������������
� ���� ���������"�� �#��������
�� <�����

����
���� �������� ��%�
�����
� ��� �������������
�������
��

��� ��

(������ +��������������������������	������
�������������
����������

����
����(������ 3��;��������(������ =���������
��	��������

�� ��
������
����
	��������
���
��
'����
������������������
�����
�����������'>������
���������*+,�

�	��&��
������	��	����������
���������������
����������������
����

����
������������������
�
��(���������'�������������������
����"���

����
�������������
�
�������	���������������������
�����������
����

&������
������������
�������
���������
�������
������
�����������

'����������#�
�*5,��(��	�����
���
�������������	�
��
����������������

���������
����'�����
����
����	�������"��
��
���'�����������	��������

��&����
�������	��������	�'��������
����������	�����"��
������������

�
�����

��
�������������������������
�
��	�
�����	��	����	������	����

�	��
����

�����
���
�
����������������������������������	������
��*-,�

4��������
�������
��
���������������������
������
�����
������������1

���
���������
���������������*8,�1�	�"������������������� ����
������

��������$	���������
��	�����	�
������
��"���������
�
����������

�

��
�������
����������������!�'������
��������
�

.������	������������������
�*6,�1���
�����������
�������
����������

������
���9�!�1������
���?�"����	���@�����	��������������������;��

������������ ���
��
� ��� ��'�(
�� �����
�������� �
�������� ��� �	�

�������"����
���������	�������

��
�����"����������
�������"��
��

�����	���	����
�����
���
������������
��������������	������"��
��

���
������
������������
��$	����������������������
���	��	���������	�

�
��������������������
������
����	����	���
��
���������������
������

�������������'�(
��:�
�����
��	�������
��������������������
�����

%���
�������	� ��"���������� �
���������&�����
� �	���
���� ����
����	

����
�:������!������#���
�"�!������7������������	����"��
�������

����!�� �	��	� ����������� ����� ���� ��%���
� ��� �	�� �������
������� ���

���

����$���"�����������������
��	�����%���
����������������"��
����

��������
�����������������������
����	�����
�4:����������������!���

4��������������#���
�"�!�	�"����������&����������
��	�����	�������	�

���������	����%�����������
�����������"����"��
���	����	������
����

�����
���*6,��.��������������������	�������������4:4�������������

��������
������
������
���
�������
���������	�����	�����������
���

�	��� ������

�������������
��������

7
��
� �	�� 4:4������������ �� ����
������� ������
�����
�������� ����

��"���	�������
��:�����
�����	������
�����

����	������������
��	�
�

����
���
��	������	��	�����������
������
��$	�
��
���������
�����
������

�����
���	����������������������

���������"���
�������
��������

����
�
����	��������	��
������
��9�"��
���
�������������	�
������

����������������
����	��	���������������
�������������%�
��������

� ��
�������� ��"�
�������� ���������
�� $�� ��"����� ����� � ��

18

��
��������������������
������������������������	���
������������

�������
���	�����9���

��������� ��
�
���� ��������������
������ ��

���� ����
��
������� ����
�������������������������������
��������

���� ����
�� ��
�
�� ���� ��"��
�� A�
�� ����
�	�"��
� �	��������
� *3,

�������
��"�������	�����������������������������
�������
��������
�

����������������	�����
��

��	����

��� �������������� ����� ���������� ���������
� �	������ �������
� �	�

������������4:��:!������4����!����������
����	��4:��(:!������4��

(�!�����
����
�����"�����B
�����	���9��
�	������	��7�������(7

���������������!�����
���
������������������
�����������
���������"���

�����C�"������������
�����C:�����������!������:����"�������!���

��������	��	�����������
������9������������������������������������

�������"�������������	�������
������
�
������
��$�
��	������	��	��)�

�������	�����#���
�"�!���	�
������
�������������������������
������

�	�����
����	���������������
�������������������
���	�����������

�����������
���������������	����
������
��.�������	�
������
�����

�������������
���	�"���
�������
D�

E B��C:�������
���&��
��������������
������#����������$���
�����

��	������������

�����4:������	�
���������&�������������	�����

����	������
�������	��C������	��C:����������
��"����	����������4:

������������	���
�����������:�������
��������������
��	��
�����

�������������������������
������������
�

E B���:����������
������#�����������
��	������	���
���������	���

����
� ����
	����� ����

��;��� �#������� �"������������ �	�� �	���

�#�
��������&����
�����:��������������#���������������������"���

����C:�����
����������	��������
�

E B�)���������������#�����������������
��	���#�
������������(�

��������
������������	��������
��������	����
������
�
����������

��
�
����
�������"�����
��:�����(:�����
��4�����
��������	����

��	���)������
������������
��
���������	��������
������������

�#���
�"���� ������� ��� ��	��� ����
������
� ��	�� �������������� �

�	���������������	���	��������
��	��
��"�
!�

;�
��� -��������
��	���������������������#�����������
��������������

�������������� �5��$������
��������
��
��������
��

�����	����	������

����
���	�
����	��������������
�������$������������
���&��
����	

����
��
��������������#���������������;�
��� 5��$	�
���&����
����

��������������
�����
������$�������������������
������	�������
���

����
��.������	�����������
��������
���	����"��������������������

����
����	������������������
�������:������������������������������

�	�� ������� ���	� ����� �	�� ��������� ����� ��� ������������ ���������

����
��������� 4:�� ��������#���
�������� �������
�
�	����������

(F�4�
��
���������	��������
�����������
�����
���������� ��F��	
�*G,!

�������
������
�����������������������
�������
��(F�4�
��������	�

����������
������������
���
��.����������

�����	������������
����

���������������������	�����	�����������#��������B�����	�"��
�����

"��
��������	��������$����"�
���
�����	��������������	���������������

�������	�����������
���	�
�
������C:��������������$	��������
������

$5�
����
���������
��	��"�����������������	�����������&����
����(�

����� ���� �	�������
������
� ��#��������$	�� ���������
����������

����
��	�
�������������&�����
���)������������	������������������4�

����
�������������	�������
���
��(����������
��������
�������$6�����

�����������	����	���������������
��������
�������������	��	�������	���

���$6���	�����������
�����
����&��������4�����������	�������������

)�����������	��������������������(�����������	����	����������$	�

�������&��
������	����������������������������������
����������

���
������	���#�
���
��:���������$-��.������$6�1�������
���
���&��
�

����	���������&��
��&�������:2D�)�6!�1���
��
���	�����
�������

�����	�������
������	���:���������$-�����	������������

.������ ��� ��������
� �	�� �����
����������� ��� �	���:������������ �	�

����������������	����
�����������������������
�������������
���

��	�������
������
����
������
��	�
������
������������������

�� ����
������
�
�
����	���
A#����������������
�
�����	�
����������
��������
����
�"�����������

�������������
����
��������
��������
��	��	������
��"�������	������

������������������� �5H��)��"��
��������:���
���������������#�

���
�"���B

����$������
������������������	�
������&��������(�

���������������	��
��������
����	������;�
��� 5��;����	�
������
����	�

��� �5������������&����
���)������������
��������������.�������	�

�#�
���
��:�	�
����������"�������������)�����������������������
���

��

���� ���"��
���� ��&����
�C:� ����
���� ���� �	������� ������������

��������$�!����������B
�����
����������
����������������������	�

(F�4����� �� �����#�� ������ �	�� ���������
��� ������� ���������� �	�

(F�4�
������
��	������������	������	�
��������

��	���������������#�

���������������������������������
�1���"�����#���
�"�������������'�

����������
�
����������������������
���������������	�����������

���#������������� �5H�	�"��
�-5����������
��$	��� �6�
����

���������������������	���
���������������
��	��	��������
�"��������

������������������
�������� �6�����1�������������
�����������"���

���
�1�����������"����������������������
���
�����
�����	�������

������#������������� �6H�
��������
���������������
��������"���

��������
�����50����������
��
���*3,�����������
!��

����������������� !"#�$�%�#��&�'���#"�
	��

� #$ %$ &$ �$ #' (' �� �'

#$))))))) � �

%$))))))) � �

&$)))))) � � �

�$))))) � � � �

#')))) �)) � �

('))) � �)) � �

��))))) � � � �

�') � � � � � � � �

����������#"�
	��%����(���)" !%�

���

����

8/�//$	� $����

;��
� C��� ��
� C���

���	������� �����

����� �����

���

���

��

�*�

�*�

�*�

�*�

�*�

�*�

��+,��*�

19

�	�����������������������������������	����� �5������������
�	����

���������������������������
��������
����������	���
���������
����

�����������������������	��
�
����
�������	����������������������#!

����
��������������"����������
��$	�����������������������	����
��

������"�
����
����������������
��	����������
�������������������

���������
����
���������
������
��	������
��������������
��"���
�

�	��	��������"���������	�����������
����$	�����������
����
�

�	��� ����������� ��
� �
������������
�� ��
����������������� ��&��
���

������������
�������	�����������
����;����	�
������
����	�������
���

"���� ���������� �����
� �� ����������� ������	��
�� �	��	�
�����������

��"�����������"������
�
����
�������������
���
��
��������������������

�������������	���
	���������#���
�"��������;�
��� 6�
����	�
��	�����

����������������������
��������	��������
����������
���"��"����������

�������
�������������
��������������������������������"��
��������
�

$	�
�
�������
���������
����������	����
���
������������	�����������

�
������������
����	�����	������������������	����������
����
�����

����
����	����������������	����������
��'�
������
��	�?��������

��"�@��������&��
�
���	�������
��"���������
��	������������������
����

���������
���������
�����	����
�����"�����������������&����
��	��

������	�����������
����$	��
�����������
������	��������
���������

&��
�
���������������� ��������"�������������� ��������������������

���	��
�����
�����������������������
�
���
��;������������
�������

������
�������������������������#�������������"��
���
��	���"�����	�

���������
���������
�������������������"���������	�������
��"����

$	�
�����������
��������
�����	�����������
���������	����������������

�	��	���
��

��������
�������;����������������������������	��
���	���������������

���
�������#�	��
��
��	�������
��"�����
�������	�����������
���

;���	������������
������"�����

���������
�������������������
����
��

��� �5H�������� �6H��
����������
���������������������
�������

��������
�������������
���
�����	��
����
��"�����
������

�� 	�����
���
�
B
���
�����������	�����"���
�
���������	��������
��"��������������
�

����������������������#�	��
���
�����������������#�	��
���������

���������
��������������
��"�����������	��������������
���������

�����������
����
�����$	�������
��"���
����������������	�����������
�

��������	����������������
�����������	��
��������	�����"����������

��"�������������
�������������
�����������������B
������
�&��������	�

���������
����������������
�������	���������&��
�
��������������

������ ����� ����� �����

��
�
������� ����� ���������
�� 7
��
� �	�

���	���
�������������#�	��
������?���
�����������@���������
���

�	�� ��� �� ������� ���� ���� �	������	���� ����������� ������� ��� ��

����������
�����
�� '�� ��
��"��
� �	���� ��	�"���� ������ �	��
���

����	���������
��������
�
	��������	����
���������������
���	�"���

���� ����� ������
�������� �"��	���� ����� ��� ������ ������ ������ ���	

��������������
��

A"�������������������
������

��������
�������������������������

����������������
�������������
����
�	
�����������

�
�������������

�����#��� ���	����	���	������	��������������������������
�	�"��
��

��������������
��������
����	����#�	��
�������������
���������

��������� ����������� ���� ������������ �������� ������������� �����

�������"�����
���������
��

���������&����������������������	�
���������
������������������
���

�	�����������������������������	�����������
����	�-5���������
���������D

'�
���
�������� �>�
��������	�8�������
�������%�
�����	�������

��������9���������	�*6,�����	������������
���&��������
��������

�������+�"������
��������������4:���4:�H��4:4���4:4�H������7:4�!���

�	��
����������9�>�
������;���	���������	�������������"������
����

����������*=,��������"��������
�� ����
����������������
�����	�

C���#������#���������C���5F���C 5F������� 5F�!����������������

�������
�������$	����������������
��	��>5F��
�����

$��������������	�������������������
�
����
�����
�1����%�
���#�	��
�

��
��	��
��"������
���
������������"��
��	��
����������������������1

�
�������	�����
��
��	����	�������	����� ����������$	����������

��������
�����
��	��������������������
����������������	����
����#�����

�����
���	���9�>�
��������
�����������	���������������"�������

�����	����
����	�����	��>5F��
��������	���

��
�
�������������"��

����
��
��"������
����

;����	�
����
���������"��������	������������������������
��������
�

�	�
�
��������������������������%�
���	������
�����������&��
�
����

������
�����	����������
��"�����"���������4������������������
�����

������������������������
��	����������
��"������&��
�������	��
������

���
	�������"���������
��
	����������������
�������#���
�"������������

��
��$��������������&��������
��	����������
�����	�����������
���

�	�������
��"�������"���
��	�������	��
��

� ������	������
������������D� 4�� �� ���������
������
� �	�� ��"��

�������������&��
�����������	������������
�������"��
��
��	���	���

�����������
������������
��
�����"����������������:!�� �	����
������

����
��������"�
��������
�
!���
������������
�����������

E ������	������
�����������D� B����
��
��� ��� ��"��� ����
��
���

����
�������������������������
��
�����&��
�������	�����������	�

�	�
��������� �	����
�����������
��������"�
��������
�
!�����	�

���������
������������
�����������

E ������	���������������������D�$	�
�������������������������

�#���
�"��������
������
����������
�����
�������������
�����������

4���	�
���������
������"����������	���
������������������&����
�����

"��
�������
��������������
������������
����������	��������������

����������������
������
�����

;������������&��
������������#���������	�����������
�������
�������

�����������������	����������������
�� �
�	���������������!������	�

�����#���������
������	�������#������������	����"������������
��	������

����	�������#�������������
���������
��������;�����"�
������������

�

�
��������������������������	����
�
�����������������	���������!���	

����
�� ��� ���	����
� ���� ���
���������� ��� ���������� $	���� �	�� ����

����
�������
����
��	���������&��
�������
������������������������

���������	���	�
������������

B��	��
	��	���9�>�
������
��������
��������������������	��>5F�

������
���	�
������������

�������� �����������	���� ����	��� ?������@� ������������ �� ����� ���

�����
�����

��������
����������-5���������
�������
���	�����������

�������	��
��������	���������$)��
��
��	��
����
�
���������
��

�����������(#��"�#��(��'�(�-�� "("����"(-�%����(��'"��%�#��&

���������
��

�����������
��

���������
��

�����
��"���

����
�������

-

>

����
�������

��"���

������

	������	�
���������"���!

����
��

20

����������������
��B�������	��������������
������	�����������
�

������������������������
������������������	����� ��
����
������

���*+,�����$)������������"����
�������
��������������
������������

�	��
�������(F�4�����������
����������
����������
������
��������

B
�����������������������������#��������
�������
��	���
����������

��

���������	���
�������
��	�������"����������
��
������
�����"�
����

����
������������������&��������������
�����������"������ ��������

����

��
�����
�������������"��
������
����������
�����������
������"�

������C������	��
��
� ���������	�"� �����
����
� ��� �	����
���	���

������������������
������"���������4���	���"���
����	��	�
	����	�

���������	������������
��	�
�����	�������������	�������
������
�����

�	��	�
	����
��	�������������
���������"��	����������
���	��������

�������
�����������
���������
�
�� ���	����	���	������������������

������������������� ��"��
����
��� ��� �	����������� ����� ������� ����

����	!�
��	� �	��� �����
������� ����
� ����� �	���� ������
�������
��

����!������"��
������������	����������������������� �"���
�����	�����

� �������	���9����������
�������
���������%�
��������	�������

����	�������������	����
��	��>5F��
�����������������������������

4�� ���� ����� ��������� ���������������� �
��� �� ��������� ��� �����

+G0�000����������
��IG�'!������#������������
�����
�
�����������

33�����
������
����������������#����+�����
�����������
��;���������
�

��

����� ����	��� �	�� ���������
����� ��������
� ���� �	����#� ��

����	��������������
����������������.���������������������
	��

�	���"������ ��
���
� ��� ����
����
����

������ �#������� ����
������

��	���
	���!� ����� �
� �� �������������� ���
����� �	�� ������� ��

����
������
������������������������������
�

;�
��� 8������������������
��	��"���������������������������������
�

���	��	����

��
�
�����������
�������������"�������
����������
���

�	��>5F��
����������������������
����"��
��������"����
������

��%�
����
������
�� ���	����	���	������	���9����������
���������"�

��� ����
���

��
!� ���
	��� �������� �	�� ����
������� �	���
	���� �

��������� ��� �	��>5F��
������;�������� �	����� �>�
���������
�

���������	���	���
	�����������������	���9�>�
������B����
���

����������������������	��"�������
���������������
���&����
�������
�

�����������	����#���	��	���
���������
��	��
���������������9�����

��� ���������
��������������"���������
���;�
��� 8�!��

.�������	�������

�"����������������	�"��������	����� �>�
����

��"���
��	��������������������������������
������
����
��������������

����
������������
������
����
�����	����
��

�������(������ 5!�

�� ��
��	����
�
�
����.���	�
��
B������������	��������	�����
���������������������������
��	������

��"������ ��� �� ���
������� �������� ��� ������������ ��	��"��� ���

������
��"��	������������$	����
���������"��������������
���
����

����� ���� �	�
���%����"�� �
�������� �����������	���D�$	�� �����
������

��
����������������������������
�1�����������������
������
��������

1��������������&�����
�����
���
������
��;����#�������������������

�
���
���	����
�����������
���
����������������
����������
�������

�	�����������
�����4�������������
�
����������������������	������
����

�����

��
���	�����������
����������������&�������
��
�����������

�	����������������4��'����������#�
��
������������
���������������
�

��������#���������
�������������������
�����������
���������"��
����

�������� *5,�� B��	��
	� ����"�� ��'�(
� ������
����� �	�� ��������

����
������
�������������������
�������#�
��������
�����������
�����

�������������������
������
������
��
�����
�����������������'����
�

�	������
�����
������������������������������
������
�&����������
�

����
�������������
������
�������
���� ��� �	��
�����	�
�������
��

��
����"�������
�������%�����������	���������������������
����	����

���	���������
���������������������
��.������������
�����������

������
������
��	����������������	�����������	D���������
������
���

��	�
	�����"����
��
���
��
����������
��������
����������������
����	

��
�������������"�
������)��
�&�������� �	�������������
��������

��"��
��
�������������	��
������������������������������������
��	�
�

������'�(������
����������$	�
��
���
�������������
���������������

���
����������
�
��

$	����&��
���������������
��� �����
������� �	������������������� �

�������������

���������	����&��
��������	������
���
�������
�����
������

���������������������	�����������
�����	����	�����������������

�����������
�����������
�����������	�
��������������"�������	����&��
��

��� ����� �
� ��� �� ������� ��"��� �	��� �	�� ��������������#����� ����

����������
/��"%%���&�%#&��'�"�#�"(&"�#��(�$�(�0 "���1/"��"#��(��'�%����-�!#02�

�

���

���

���

���

���

���

���

� � � � � �

��������������

����������

 ��	���� ����������

���

!�������

�������
������
�������
������
����
����
�����
���
����
�����
 ����
 ��	���

�

���

���

���

���

���

���

���

� � � � � �

��������������

����������

 ��	���� ����������

���

!�������

�������
������

�

���

���

���

���

���

���

���

� � � � � �

��������������

����������

 ��	���� ����������

���

!�������

�������
������
�������
������
�������
������
��������
����
�����
����
�����
���
����
���
����
�����
 ����
 ��	���

�����
 ����
 ��	���

���

���

���

���

���

���

���

� � � � � �

��������
�������

�������
������

����

�������
�������

 ��	����
 �����
�����

���

!�������

�������
������
�������
������
����
����
�����
���
����
�����
 ����
 ��	���

���

���

���

���

���

���

���

� � � � � �

��������
�������

�������
������

����

�������
�������

 ��	����
 �����
�����

���

!�������

�������
������

���

���

���

���

���

���

���

� � � � � �

��������
�������

�������
������

����

�������
�������

 ��	����
 �����
�����

���

!�������

�������
������
�������
������
�������
������
����
����
����
����
�����
���
�����
���
����
�����
 ����
 ��	���

����
�����
 ����
 ��	���

�!�C�����������������������
������
 �!�C���������������������
������

21

����	��B������������
����������	��	����
���
�����	�����������
����

���	��������	���
���������
���
�
�������	���������
����������

�	�����������������������	�
	�������
��������	���
	�����$	��������
�

����������
�����������������������������	�������

��
������#������

���
�� ��� �
� ��������$� ���� ���� �����
�� ��� �
� ������ $	��������� ��

���
��������	����������
�
�����������
��	����������
����
������	��

�	�����
��������������������	��
���������������	��������������
���	�

����������������	��
�
�����������
�
�����������
����������

�������������
��"�������
���������
����������������������������
���

	���
������
���
���������������������������	�
	���������������	���

���
����������
�"�� ������ ��� ��������������
���
����
�"��
�
�������

�����
��4������
�
������	�"�����������	���	�����
�������������	��	�

��������������
�
����������������������������
��������������
�������

B
������	��
�����������
�����	����
�
���������������
����������
��'�

�����
��	�����������
���?����������@���������"������
�����#�����

��
� ��������� �������
�������� �	�� ���������������������������� ���

&��
�
� ���� ��
�������� �������������� ���

��� �	�� ���������
��� ��

����
�����������&����� �	����&������ ���������� ����
���� �	������
���

���	��$	�� ����
��������
� ���� �	�� ������������ ���������
� �������

����
������"���������	�������
��"�����$	�
���	�����������������
����

������	��������������������������������	��������������&��
�
����

�	������
������
��	����

�����	�
����&��
�
��������
����
���"�������	�

��������������	����"�������	�����
���������	��������&��
�
��	�����

������������
�����	�����	��������������������$	�
�������������������

�
����
�������������	����
���
�����������������������������
��������

���
��������
������
��

$	���#������������������;�
��� +�����
�����
�	����	�
��	������
��	�

�������������������������
����������"���D�$���
�������$����&��
�
��

	���������������	��	�
	��
	����������������������"���3������������

�	�
���&��
���������
����������������������������������
�����	�����

��
�������	�	�"����������&�������B����"���8���	�����������������
����

�	���$������������&��
����+0�
	����� ���������� ����
���� �	�
������

$	�
���������
��	���$��	�
��������������
������"�
������
���
�����	�

������������������	���������������������	���������������������������

����������$	����������	�������������������	�������
��"��������	������

������������&��
�������"���3�
	���������"��������������
����
�������

�����"���8�����������	����������������
������
���	���$����������
���

��"�
����������	��
��������'����
���	�����
�����"����
�������	������

��"������������������
������	�������
������
������������
��������	�

�������	�������
��"����������
������"��������
	�����
��������������

�	������
������������
�"����
�����
��4���	������������"���8��	���"���

��������
�������������������	�������
�������$�����	�������������

�#���
�"���������������������������������	���
�������������	��������

����������"���+�����"�������������
�
���������

$	��
�������"����
������	�
��������	��
��	���������������������������

�������������
��"�����������	�����������"�����������������
������

�������������"���������	�����������4�������#��������	����"��
����

�	����
����������	���������������	�����
�����"���
��"����
����
	�
���

�	�
�����
���������

��C�"���	���

������
���
����

�������������������

	�
	���"��� �����������������
����
���
��������	��������������
������

�������������	�������������
�����'�
���
��	����#���������	����

�	�������������������������
���
����������	�����������	��������
�

���
�����	������������������	����������������
�����	��������#���

����	��	����
���
��
����	���"��������
����
������������������	�������

����������������������"��	������������������;����	������
�����	�

���������
������	��������������&��
�
�������
����������
��������
	�

�����������
�����������	����������������
�	��������	��������������
�

�����������	�
������������	��
	������������������	��������������������

������������������������	���������������	�
��������"���������

B��	��
	���"�
��������� �	������������������������"�����������

���������"��&�����
����������������F��	�����2�������������������

���
� ��� �������� ���� ���
�� "�����
� ����

� �������
��
���� ��
��

��
�
�������	���"��������������
�����������������
��������������"���

�������.����������	��������
��
������������������	����������������

������������
��
��	����������������������������

��������
��$��
�"���

�������#��������

�����	���������
�����������
������"�
��������	�

���
���	������������������������	���
���
���
�����������
����	�����������

$	������
��������������	�������	������	��������
������
��
����������

��	����
��
���������������	��
����	������%������
���������	�����
�

�	������������	���	&���	����
�������
���������	���	������������	

��	���	�����������4���	�����
����
����������
��
����:�������
���&�����

��� �������� �	�� ����������� ��������� �	���� ����
� ����������

�����

������� ��

����� ���
��
� ������ ������������� 4�� �	��
������ ��
��

����������������������	�	�
	����
�����������	�
������
�����������

�	�����������

�������������	����"�
���������	�
�������.���"�����	�

������"��	�����
�	�
	��������������
�����	�����������	���	���������

��&����
��	����&��
������������������������
��

 �"���
�������������
�����	����
����������	��
����	����	������������

�	��������������	��
�����������������	��	����	�����
������	��
�����

���������"���
������������������������	�����������
�����"�����	��&����

����������
	������	��
���	�����������������������"���4����
����
�
�

	���"��������
�������

��������������������������	����
�������$	������

�
����
����������
��������	��	��
������
�����
��������
��"��	�
	�����

����������4���	��
����	����
�����
�����������	�����	��	�����
�����	���

�	�������
��"�������������"�
����������������
������������������������

�����

����	�����:����������	���������������
������	�������
������	

���	�������������������������	�	�
	��������������4�
��������������

��������#�������	������	�����������
�����
������������
���������������

�	������
�����������"�
������
���
��������������	����
�����������

�����	����#��
���
�

$	��
��������	�
��������������������
��
������&��
������
��	����������

�����
���������������	��������������������������
��������������������

���������
��4��������
������	�������������
��������������������
���

��
���������������
��	������#��
��
���"��	����
���
���������������

���	� ������������ ����� �����������"������ ������������������
�����

�����������
��"��	����������
�����
��������������
��������������

����������������&�"%"#��(��)" !%�

���1��2�

�� ���
�
�
�
�� ���

�
�
�
��

��132 �
�
�
��1�2 �
�
�
��1�2

���1��2� ��

��

�4

22

;���	���	����
���
�����������������
�
�������
���������	���"��������

������������"��&�����
��$	�������#������
�������&�������
����������#�

������������
�������������������������	�����������������
����������

'����
���	����������������������
�����
�����	��
����������������

�	�������#������
���	����
�����"������
����
������
���������������

��������	����������#��������
�������������$	�
��"���
�������������

��� �� ����
������� �����
� ��
���� ���
����������)����������� �	�� ����

����	����������������������
�������	������������������	�
�����������

�	����
������������
���	�������
������
�����#�����������
��	������

����&������������	��&�������
����

4� ��
�
�
����������5���

(������������
�������
���������������������������
����������"��
��

��'�(��;���	��������"�����
�������

������������������
���
����

����	�������������
��	��
��"�
��������������������%�
���������������

�����
���������
����(������	������������
���������������"����
������

�����
�������������������������������������
����	�������
�������
���

�	�
����������
�"�������������	���
��	�
�������������
���������������

B����������
� �	����	��
���	����������
������������������������

������������������
��
��������B�
���������
������?�����������@�
���

�����
��������
�������������
��	�����	��������������������
���������

��� ���������� ������������������
����
������
�������������������

A#�
���
�
��������
��������������	������������	����
����	���������

����#�
���
�����
��
������������
�������������������
������
��$	�
����

���
��
����������	����
������
���
������	������������
������
������

��
���������������	��
��"�
�������	��������
������
������������

�#�
���
�����
��4���������������	������
������
�����������

������	���

������������#���
�"����
������������
�
������	�������
������
��	����	��

����
�����	��������
���	��������	�������������������	����
���������"���

��������	�����������

����������������
������
������������
��������
�	�������������������

������������������
��	�������������
������������
��������
���������

���� �����

�
������������
�� �������� ��������������

����
����	����

.������
��	��������
������������������������������������	��	��	���

�����
�	���������������������������	���
��
���
��������������	����

��	�������
�����
�����
���	�����������	������
����������������
��4����

������
���������������
������
�
����������#��������	���������

����
�����

�������������������"����
�����
������
���	����
��	������

���������
��
���������
�
��������
��
������
����	�
����
����������

��������	������������
�����

����
�����
�����������4��
������������

����
� �����
	�� �"������ ��

����� ��� �	��
�� �	����
��� �����
������

�����
��
����������������
�������
��������������
������������#

����(�	��������
��

6� �

�����

4���	�
����������������
����	���
��������	��&��
��������������"����

��
�������������
�������
����������
�������
�
��������
�	�
	�����

����������������"����'�(�����
����������	���������������������

�	����
��
���������������������������������
���	��	������������������

�
����� ���� �� �����
������� ����
������� �
�����������������������

����
������
	�����	����	���������������
���������������
��������

�����'�(���"����������'������������
��	�����������������������

��
�������
��

��� �	��
����������
�������
����������
� ���� �	���#�

�	��
����� �	�� �����
��"������
���
������������"��
���
������������

����������;���	����������������
�������	�������������#��������

�������	� ���������� ��
�
���� ���� ��� ����������
� ��� ��
��
������

��	���������
��������	�
�������������������$)�������

��������

�����
����������
�����������"���	��
��������������������������
����	

������������
�
�����������������
�
���������
���������

�����"����������
����������	�������������
�������������
�������

��
�
����	��	������
��
������
��������������������������	���������

��	�"������������������������
����	���������
������

���
�����	�

�����
�������������#�	��
������������������
��;�������������������

������

��������
������
��������	����������
�����
������������������

�������
��4�������������������������������
���������"�����
�����

������
��	�������������"���������������������"��&�����
���
�������	�

�2��������
��
���������
�������
��	��
�������������
������������

���������'�(�����������

7� ������
���
*-, :��'������������(�	�������D�)�������������� ��������
����

'�$���
��B����4�����������/D-15-��-/==!

*5, 9��9�����D�.������	�����������
����'����������#�
��F�����C��

�������9������������
��)�����������'$��500=!���C4�F�3+�

(����
��������-G185��500=!

*6, J��9���D�C���
����������
�� �������
�(�
���
��4�� �������
�

(�
���
D�B��B�"������)���
���(����
���<����
���C)(�30D

6/6�8G-��-/=G!�

*8, J��9��������B��:�����D�$���
�������F����

��
D�)������
�����

$��	��&��
�����
���K���������-//6!

*+, ���.��
���������$��.L����D�B��A���������4����
�������������

C���"��$���
�������������F����

��
�������M�K������
�

A�
�������
�3-D6������+001+56��500=!

*3, ���.��
���������$��.L����D� ��������
��������������
��������

��"�����������

��
��$�����������������M�K������
��A�
��

������
�500G�

*=, (��.�������)��)��K����������9�����������D�A"�������
������

'�
���F�������
�����)��������������������������
��(49�

� ��:������66D-�������+G136��5008!

*G, F�� NC�����A�� NC�����(��F����4��)
�����9��(�	�������C����
�������

 :�FB$.
D�4�
����;������������C���������
��F�����(49�

� ��)����D�/061/0G��5008!

*/, ��������� �%������������ �!���"���5�O���"���6�)����(���

���������6)�:��������������

*-0, �2�����-�0D�B������2��������
��
���	���DOO�����6���
O

���O�2����

*--, �2�����7������;���������	���DOO�����6���
O$:O#&������

23

Database servers tailored to improve energy efficiency
Goetz Graefe

Hewlett-Packard Laboratories

ABSTRACT
Database software can be tailored for specific applica-

tion domains and their required functionality, for specific
hardware and its characteristics, or for other purposes. This
brief paper collects issues and techniques required or desir-
able for making a server-class database management sys-
tem energy-efficient. The opportunities go far beyond cost
functions and general performance improvements. Topics
include additional layers in the memory hierarchy, I/O op-
timizations, data format, scheduling, adaptive query plan
execution, and self management in novel ways.

This paper represents a challenge rather than a solu-
tion. Promising approaches and techniques are indicated
throughout, but the challenge is to provide tools for build-
ing and tailoring experimental database server software that
enables research into energy-efficient database manage-
ment.

1 INTRODUCTION
Electricity is expensive in terms of both direct costs

and its impact on the environment. For example, in the US
the direct cost is about $1 per Watt per year ($1/W/y ÷
365d/y ÷ 24h/d = 11.4¢/kWh). Rates for large industrial
users are substantially lower (in a few places as low as
1¢/kWh [Q 07]), but if customer costs for power transfor-
mation, air conditioning, uninterruptible power supply, and
their maintenance are also considered, $1 per Watt per year
is again a reasonable first approximation. A SATA disk
drive draws about 12W during operation and therefore
costs about $12 per year. Over the lifetime of a disk drive
(3-6 years), its energy costs are similar to its initial pur-
chasing cost and should be given similar consideration.
Other components also have roughly similar costs for ini-
tial purchasing and lifetime power, including processors,
memory, main boards, and power supplies.

Sites of new data centers have been chosen by prox-
imity to electricity generation as well as to water for cool-
ing, for example Google in The Dalles, Oregon and Yahoo
and Microsoft in Quincy, Washington – all near the Co-
lumbia River and hydroelectric dams. At the same time,
hardware designers consider power and cooling among
their greatest current challenges [RRT 08]. Some current
hardware consumes about 10kW per 19” rack. Power has
become a significant component of data center costs, not to
mention its impact on an organization’s reputation and on
the global environment.

While software for mobile (battery-powered) devices
may include techniques targeted at energy efficiency, cur-
rent server software typically does not. For database serv-

ers, some techniques aimed at general performance and
scalability may also have incidental benefits in power effi-
ciency, e.g., data compression, but designing database
servers for energy efficiency seems to hold untapped poten-
tial.

One can argue whether an improvement of 25% is
worth the required effort. For energy efficiency as for tradi-
tional performance metrics, 25% performance improve-
ment due to software changes does not seem an impressive
research break-through. In sales situations, however, 25%
is an important improvement not only in performance and
scalability but also in energy savings and costs. 25% cer-
tainly make a difference for a notebook user about to run
out of battery power or for a data center operator about to
run out of transformation (power supply) or cooling capac-
ity. Given the early stage of research into software tailored
to energy efficiency, it seems advisable to explore multiple
directions, pursue any improvements readily obtained, and
look for areas worthy of future focus.

Performance improvements, e.g., a new generation of
CPUs or a faster sort algorithm, usually imply less energy
required for a given amount of work. On the other hand, the
goal here is to focus on opportunities for energy efficiency
beyond those achieved by new hardware and its higher
performance.

The purpose of this paper is to challenge software and
tools developers to recognize this opportunity and to
unlock its potential. Section 2 lists various hardware fea-
tures that enable energy savings; many of these features
require appropriate software tailored to control or exploit
the hardware. Section 3 identifies opportunities for tailor-
ing data management software for optimal energy effi-
ciency. Section 4 briefly points out some opportunities for
self-management tailored to energy efficiency. Section 5
offers some preliminary conclusions on tailoring data man-
agement software for energy efficiency.

2 HARDWARE
Hardware efforts towards energy efficiency are well

known, largely due to their importance for mobile devices
and portable computers. These include dynamic voltage
and frequency adjustments of processors, temperature-
controlled fans, power-saving modes for disk drives (which
used to be marketed as noise reduction), and multi-core
processors instead of ever-higher clock rates.

The most appropriate hardware differs substantially
whether raw performance or energy efficiency is the pri-
mary goal [RSR 07]. The definition of a first benchmark is
a welcome first step. Other benchmarks for entire work-

24

loads in online transaction processing and business intelli-
gence remain open opportunities. The most immediate ap-
proach might be definition of energy efficiency metrics for
established benchmarks such as those defined by the TPC
(www.tpc.org).

Proposals for server hardware include enabling and
disabling memory banks, substituting flash memory de-
vices for rotating disks, and virtualization. Virtualization of
processing and storage may be useful for power savings if
implemented and controlled appropriately.

The obvious question is how data management soft-
ware can cooperate with and exploit such techniques, and
what other hardware-oriented techniques data management
software can contribute.

For example, assuming a homogeneous multi-core
processor, what software techniques are required to split
even small tasks into concurrent actions with minimal co-
ordination overhead? In a heterogeneous multi-core proces-
sor (with some cores optimized for performance and some
for energy efficiency), what scheduling techniques should
assign actions to cores?

Flash memory can serve as extended (slow) RAM or
as extended (fast) disk storage [G 07a]. The former usage,
perhaps as virtual memory controlled by the operating sys-
tem, may be possible without software changes. In a data-
base server, the latter usage seems to more appropriate be-
cause flash memory can serve as persistent storage. It re-
quires adoption of techniques from log-structured file sys-
tems [RO 92], possibly in the form of write-optimized B-
trees [G 04]. Log-structured file systems and write-
optimized B-trees can subsume the “wear leveling” usually
implemented in flash devices with “flash translation layer”
and can also enable more energy-efficient RAID levels and
usage. Erasing large blocks of flash storage is very similar
to space reclamation in log-structured file systems over
RAID storage.

Flash memory may also benefit from other changes in
the database server software. For example, is asynchronous
I/O still useful in terms of performance or energy? What is
the policy for page movement between flash storage and
disk storage, and how is the policy implemented? The data
structures for the policy, e.g., a linked list for an LRU-like
policy, should be maintained in RAM and could be re-
initialized rather than recovered after a system crash.

Another approach attempts to reduce RAM and its
high energy consumption by using flash memory. With
very short access times, flash memory may serve as back-
ing store for virtual memory, but in database query process-
ing, it might be even more efficient (and thus energy-
efficient) to employ index nested loops join rather than to
rely on virtual memory for a large temporary data structure
such as a hash table in hash join or hash aggregation.

Perhaps the most immediate opportunity for energy
savings through carefully crafted database server software

is highly reliable storage from lower-reliability and low-
power components. Due to the “small write penalty” of
RAID-4, -5, and -6 (dual redundancy surviving any dual
failure), many users and vendors prefer RAID-1 (mirror-
ing). Mirroring doubles power consumption for writes but
not for reads. It also doubles power and cooling needs dur-
ing idle times. In contrast, RAID-5 merely increments
power and cooling during writes and during idle; reads are
as efficient as with raw devices. RAID-6 can achieve the
same cost RAID-5 by using arrays twice as large, with no
loss in reliability. RAID-6 using energy-efficient 2.5”
drives may match traditional 3.25” enterprise drives in per-
formance and reliability with substantial energy savings. A
hot spare can improve mean time to repair in any RAID
level; an active hot spare can even improve the perform-
ance during normal operation in RAID-5 and -6.

The challenge for tailoring data management software
is to enable the appropriate software techniques that enable
and complement these array arrangements.

3 SOFTWARE
Although perhaps not obvious, database server soft-

ware can contribute a fair amount to energy-efficiency of
database servers. The common theme here is that tailoring
data management software to energy efficiency is a re-
quired next step in its evolution as much as, for example,
support for semi-structured and unstructured data and sup-
port for novel hardware such using flash memory as inter-
mediate layer in the memory hierarchy. For the time being,
perhaps the most appropriate goal of tailoring database
server software for energy efficiency is to enable experi-
mentation. Factoring the software architecture and its indi-
vidual components, careful design using long-lived abstract
interfaces and alternative concrete implementations, and
separation of policies and mechanisms are traditional im-
plementation techniques that require even more attention
and perhaps tool support than in the past.

3.1 Query optimization
In query optimization, the cost calculations can com-

pare plans based on energy consumption rather than per-
formance or processing bandwidth. The result may be dif-
ferent break-even points for alternative query execution
plans. For example, index nested loops join may be chosen
over hash join in spite of higher response times, because in
a hash join, scan (I/O) and hashing (CPU) typically overlap
and thus draw power simultaneously, whereas index nested
loops join usually switches back and forth between CPU
processing and I/O. The core issue, of course, is that with
respect to power, concurrency and asynchronous operations
cost the same as sequential or synchronous operation
[ZEL 02], whereas traditional performance-oriented query
optimization careful hid concurrency and parallelism in its
delay-oriented cost models.

25

Effective heuristic guidance quickly establishes tight
cost bounds that enable safe pruning of alternative plans
guaranteed to be non-optimal. Heuristic pruning when op-
timizing for energy efficiency may be different from heu-
ristic pruning for performance or scalability. As for tradi-
tional cost goals, bounded-loss pruning continues to apply
to both alternative plans and complementary plans. For
example, ignoring cost differences of 5% permits pruning
when an alternative plan costs at least 95% of the best
known plan and when the second input of a join when its
cost is less than 5% of the cost of the first input.

Perhaps most importantly, query optimization must
consider at which layer in the memory hierarchy an index
is available [RD 05]. In traditional query optimization, if
the I/O bandwidth matches or exceeds the bandwidth of
predicate evaluation, scanning an index on disk costs the
same as scanning the same index in memory. In query op-
timization for energy efficiency, this is clearly not the case.
This example also suggests the need for novel query opti-
mization techniques [RD 05] and for novel dynamic query
execution plans that choose based on memory residency at
run-time or start-up-time. In other words, software design
methodology and tools ought to permit preserving func-
tionality from (query) compile-time to (plan) run-time at
will, e.g., cardinality estimation, cost calculation, and plan
choices.

In order to make optimal use of indexes available in
memory, B-trees must be exploited in all ways both for
search and for sort order. For example, an index with keys
‹a, b, c, d, e› can support predicates on only ‹b› and ‹d› (no
restriction on ‹a› and ‹c›) by efficiently enumerating the
distinct values of ‹a› and of ‹a, b, c› [LJB 95]. Moreover,
the same index enables efficient scans ordered on ‹a, e› by
sorting ‹e› values for each distinct value of ‹a›, on ‹b› by
merging runs defined by distinct values of ‹a›, on ‹a, c › by
combining these techniques, and on ‹a, c, e› by applying
them multiple times. Of course, traditional set operations
on indexes (intersection, union, difference), single-table
index join (two indexes of the same table together cover a
query), and multi-table index join (indexes on different
tables reduce fetch operations from one or more tables)
should also be supported and exploited for minimal energy
use. Adding a large variety of possible query execution
plans even for simple queries or simple components of
complex queries adds substantial complexity to query op-
timization, in particular the plan search and its heuristics
for search guidance and for pruning. Development, testing,
and verification of search and of heuristics seem underde-
veloped fields in software engineering, at least in the prac-
tice of database system development.

3.2 Scheduling
As hardware designers employ multi-core processors

for energy efficiency, designers and implementers of data-
base software must react, not only to make database server

software perform well on such processors but also to con-
tribute to energy efficiency. In particular, the granularity of
parallelism should become finer. For example, one thread
might prefetch needed data into the cache while another
thread performs the actual work, one thread might decom-
press data while another thread performs predicate evalua-
tion, or scanning and predicate evaluation within a single
page may be divided into multiple tasks assigned to multi-
ple threads.

Another scheduling consideration is CPU performance.
If predicate evaluation for a page can be completed faster
than the next page can be read from disk, i.e., if CPU
bandwidth is higher than I/O bandwidth, energy can be
saved by reducing CPU clock frequency, voltage, power
consumption, and cooling requirement. Complementary
tailoring of database management system and operating
system, e.g., providing mechanisms in the operating system
to be governed by policies in the database management
system, might out-perform generic solutions OS-centric
[MB 06] in terms of both system throughput and energy
savings. One such design, albeit clearly not taking com-
plementary tailoring to its limits, is cooperative I/O pro-
posed by Weissel et al. [WBB 02].

Parallel query execution has two contradicting effects
on energy efficiency and thus requires new investigations
and new heuristics for query optimization. On one hand,
parallelism introduces additional effort compared to serial
query execution, for example, data transfer, thread creation,
flow control, and other coordination tasks. Thus, it seems
that parallel query execution always requires more energy
than serial execution. On the other hand, parallel query
execution permits each processor to run at much lower fre-
quency and voltage without overall performance loss.
Given that energy and cooling needs are not linear with
voltage and frequency, parallel query execution may actu-
ally save energy despite adding actual work. This is very
fortunate given the recent hardware trends towards highly
parallel multi-core processors. For optimal energy effi-
ciency, very dynamic control of the degree of parallelism is
probably required.

3.3 Physical database design
Compression has been considered with respect to per-

formance, e.g., in the “ten byte rule” [GP 97], but can also
be guided by energy-efficiency by comparing the additional
processor energy for compression and de-compression with
the energy saved in the I/O subsystem due to less volume.
Tailoring for optimal energy efficiency requires a repertoire
of compression methods, from simple value truncation
(e.g., trailing spaces), de-duplication (applied per field, per
record, per page, per index, or per table), and order-
preserving compression (Huffman, arithmetic).

One specific compression technique for non-unique
non-clustered indexes employs bitmap instead of traditional
lists of row identifiers. Interestingly, if run-length encoding

26

is employed as bitmap compression, the counters are quite
similar to compression of lists of row identifiers using the
arithmetic difference between row identifiers [G 07].

Designed to reduce the amount of I/O in large range
scans, column stores have recently received renewed atten-
tion [SAB 05]. For exact-match queries, both in OLTP ap-
plications and in BI applications using materialized and
indexed views, merged indexes [G 07] can provide master-
detail clustering of related records and thus save I/O and
space in the buffer pool. Multi-dimensional index such as
UB-trees [RMF 00] deserve renewed research with respect
to energy efficiency in BI applications as they may avoid
both large single-dimensional range scans and index inter-
section operations.

3.4 I/O scheduling
I/O scheduling and placement offer further opportuni-

ties for energy savings. For example, write-only disk
caches promise to reduce disk accesses at the expense of
introducing write delays. Log-structured file systems can
reduce disk accesses while introducing only a minimal
write delay. Write-optimized B-trees permit adaptively
combining read-optimized and write-optimized operation,
and they do not depend on cleaning entire large disk seg-
ments before writing. Tailoring database indexing software
requires appropriate options during software assembly, data
definition, and adaptively during database operation.
Moreover, a specifically tailored database management
system ought to be combined with an operating system
tailored in an appropriate and complementary way.

If multiple concurrent query operations scan the same
or similar data, sharing the scan can improve performance
but also save energy. There are multiple policies for shar-
ing scans [ZHN 07], but sharing can be push even further.
An obvious opportunity is caching results of the inner plan
in nested iteration [G 03]. Stop-and-go operation such as
sorting and hash join could present another opportunity. As
they materialize an intermediate result in memory or on
disk, such an intermediate result could be shared. In a sort
operation, for example, each consumer might have to re-
peat the final merge step, but it would save computation of
the input, run generation, and any intermediate merge steps.

There are also savings opportunities in writing. For ex-
ample, write off-loading [NDR 08] directs write operations
to differential files [SL 76] on alternative disks rather than
spin up powered-down disks. This technique can be further
improved in a RAID-1 environment (mirroring) where one
mirror may be powered down, the other mirror can serve
read requests, and a differential file elsewhere satisfies
write requests. More techniques of this kind will undoubt-
edly be invented and require evaluation in experimental
and production environments.

In general, buffer pool management can contribute to
energy management by means of sharing, asynchronous
prefetch and write operations, and sharing. Dynamic plans

that choose the alternative plan based on current buffer
pool contents could save substantial energy for I/O. The
tradeoffs and break-even points between sharing and not
sharing probably differ depending on the devices involved,
the query execution plans executing concurrently, and the
relative importance of energy savings versus performance.
Again, until these techniques and tradeoffs are better un-
derstood, tailor-made data management software should
offer multiple techniques together or one at-a-time.

3.5 Update techniques
Update operations offer an unusual savings opportu-

nity. Updates need to be applied to all indexes, materialized
views, summary synopses such as histograms, etc., but not
necessarily immediately. In other words, deferred index
maintenance can be employed to alleviate temporary load
spikes and thus to reduce peak power consumption. In par-
allel systems, deferred index maintenance employed in
only some of the nodes can reduce not only peak power
demands but also temporary load imbalance.

A special form of deferred index maintenance captures
all updates in the target index but not necessarily at their
final, search-optimized locations: a partitioned B-tree
[G 03a] may merely append incoming data changes and
thus employ partitions in the same way differential files
employ master and delta files [SL 76]. Additional perform-
ance and energy savings may be possible if a single step
applies the updates of many user transactions to the master.
This technique has been explicitly proposed for column
stores based deferred changes captured in traditional row
format [SAB 05] but it seems independent of the storage
formats involved.

Other techniques for load spikes are mechanisms to
“pause and resume” all utilities such as index creation, de-
fragmentation, histogram refresh, database consistency
checks, etc. Loading new data (“roll-in”) and erasing out-
of-date data (“roll-out”) may permit “pause and resume”
based on subsets of the change set, based on subsets of
maintenance operations such as index update and verifica-
tion of integrity constraints, or both.

4 SELF-MANAGEMENT
Designing database software for energy efficiency also

affects database utilities, for example defragmentation,
reorganization, and tuning the physical database design
with indexes, partitioning, materialized views, and place-
ment of data in the memory hierarchy.

These utilities must consider both costs and benefits
with respect to energy efficiency as well as timing of the
operation relative to both peak loads and idle time. Utilities
should not force operating processors in high-power modes
and should not prevent powering down a device.

27

5 SUMMARY AND CONCLUSIONS
In summary, while power has traditionally been a topic

mostly for mobile devices, power and cooling contribute
substantially to the cost of data centers. Improvements in
energy-efficiency can have substantial positive effects on
operational costs, on an organization’s reputation, and of
course on the global environmental.

Hardware designers have risen to the challenge of cre-
ating more energy-efficient components, including multi-
core processors running at moderate frequencies, flash
memory with low access times and practically zero idle
power, and sensor-controlled fans and cooling. Designers
and implementers of database software, on the whole, have
not yet realized their potential contributions, neither those
that exploit hardware improvements designed for energy
efficiency nor those that save energy independent of the
hardware employed and its energy-saving features.

The present paper outlines challenges and opportuni-
ties for specific software techniques that may reduce en-
ergy requirements of database servers. Techniques for en-
ergy efficiency, not only for databases on mobile devices
but also on servers, is a challenge for database researchers,
vendors, and all those offering software tools for designing,
implementing, and tailoring data management software.

Tailoring data management software will remain a
never-ending challenge in order to support novel applica-
tions and their data such as spatio-temporal and text min-
ing, to exploit novel hardware such as multi-core proces-
sors and flash memory as additional layer in the memory
hierarchy, and to serve novel operational needs such as grid
computing, autonomic self-management, virtualization,
software-as-a-service, and energy efficiency. Thus, any
investment in research and development of tools for tailor-
ing database management systems will retain their value
for a very long time.

REFERENCES
[G 03] Goetz Graefe: Executing Nested Queries. BTW

Conf. 2003: 58-77.
[G 03a] Goetz Graefe: Sorting and Indexing with Parti-

tioned B-Trees. CIDR 2003.
[G 04] Goetz Graefe: Write-Optimized B-Trees. VLDB

2004: 672-683.
[G 07] Goetz Graefe: Master-detail clustering using merged

indexes. Informatik•Forschung und Entwicklung 21(3-
4): 127-145 (2007).

[G 07a] Goetz Graefe: The five-minute rule twenty years
later, and how flash memory changes the rules.
DaMoN 2007.

[GP 97] Jim Gray, Gianfranco R. Putzolu: The 5 Minute
Rule for Trading Memory for Disk Accesses and The

10 Byte Rule for Trading Memory for CPU Time.
ACM SIGMOD 1987: 395-398.

[LJB 95] Harry Leslie, Rohit Jain, Dave Birdsall, Hedieh
Yaghmai: Efficient Search of Multi-Dimensional B-
Trees. VLDB 1995: 710-719.

[MB 06] Andreas Merkel, Frank Bellosa: Balancing power
consumption in multiprocessor systems. EuroSys
2006: 403-414.

[NDR 08] Dushyanth Narayanan, Austin Donnelly, Antony
Rowstron: Write Off-Loading: Practical Power Man-
agement for Enterprise Storage. FAST 2008.

[Q 07] http://quincywashington.us/utilities_rates.html, re-
trieved December 26, 2007.

[RD 05] Ravishankar Ramamurthy, David J. DeWitt:
Buffer-pool Aware Query Optimization. CIDR Conf.
2005: 250-261.

[RMF 00] Frank Ramsak, Volker Markl, Robert Fenk,
Martin Zirkel, Klaus Elhardt, Rudolf Bayer: Integrat-
ing the UB-Tree into a Database System Kernel.
VLDB 2000: 263-272.

[RO 92] Mendel Rosenblum, John K. Ousterhout: The De-
sign and Implementation of a Log-Structured File Sys-
tem. ACM TODS 10(1): 26-52 (1992).

[RRT 08] Ramya Raghavendra, Parthasarathy Rangana-
than, Vanish Talwar, Zhikui Wang, Xiaoyun Zhu: No
“Power” Struggles: Coordinated Multi-level Power
Management for the Data Center. ASPLOS 2008.

[RSR 07] Suzanne Rivoire, Mehul A. Shah, Parthasarathy
Ranganathan, Christos Kozyrakis: JouleSort: a bal-
anced energy-efficiency benchmark. ACM SIGMOD
2007: 365-376.

[SAB 05] Michael Stonebraker, Daniel J. Abadi, Adam
Batkin, Xuedong Chen, Mitch Cherniack, Miguel
Ferreira, Edmond Lau, Amerson Lin, Samuel Madden,
Elizabeth J. O'Neil, Patrick E. O'Neil, Alex Rasin, Nga
Tran, Stanley B. Zdonik: C-Store: A Column-oriented
DBMS. VLDB 2005: 553-564.

[SL 76] Dennis G. Severance, Guy M. Lohman: Differen-
tial Files: Their Application to the Maintenance of
Large Databases. ACM TODS 1(3): 256-267 (1976).

[WBB 02] Andreas Weissel, Bjórn Beutel, Frank Bellosa:
Cooperative I/O: A Novel I/O Semantics for Energy-
Aware Applications. OSDI 2002.

[ZEL 02] Heng Zeng, Carla Schlatter Ellis, Alvin R. Le-
beck, Amin Vahdat: ECOSystem: managing energy as
a first class operating system resource. ASPLOS
2002:123-132.

[ZHN 07] Marcin Zukowski, Sándor Héman, Niels Nes,
Peter A. Boncz: Cooperative Scans: Dynamic Band-
width Sharing in a DBMS. VLDB 2007: 723-734.

28

Generating Highly Customizable SQL Parsers

Sagar Sunkle, Martin Kuhlemann, Norbert Siegmund,
Marko Rosenmüller, Gunter Saake

School of Computer Science
University of Magdeburg

39106 Magdeburg, Germany
{ssunkle,mkuhlema,nsiegmun,rosenmue,saake}@ovgu.de

ABSTRACT
Database technology and the Structured Query Language
(SQL) have grown enormously in recent years. Applications
from different domains have different requirements for using
database technology and SQL. The major problem of current
standards of SQL is complexity and unmanageability. In this
paper we present an approach based on software product line
engineering which can be used to create customizable SQL
parsers and consequently different SQL dialects. We give an
overview of how SQL can be decomposed in terms of fea-
tures and how different features can be composed to create
tailor-made parsers for SQL.

General Terms
Design, Languages

Keywords
Tailor-made Data Management, Embedded Systems,
Feature-oriented Programming

1. INTRODUCTION
Since its modest beginnings in the 70’s, database tech-

nology has exploded into every area of computing. It is
an integral part of any modern application where dif-
ferent kinds of data need to be stored and manipulated.
All major database technology vendors have adopted a
very general approach, combining functionality from di-
verse areas in one database product [8]. Likewise, Struc-
tured Query Language (SQL), the basis for interaction
between database technology and its user, has grown
enormously in its size and complexity [6, 13]. Start-
ing with the standard selection-projection-join queries
and aggregation, SQL now contains a number of ad-
ditional constructs pertaining to new areas of comput-
ing to which database technology has been introduced
[8]. All major database vendors conform to ISO/ANSI
SQL standards at differing levels, maintaining the syn-
tax suitable for their products, thus further increasing
the complexity of learning and using SQL. Require-
ments like performance, tuning, configurability, etc.,
differ from domain to domain, thus needing a different

treatment of database technology in different applica-
tions. Characteristics of SQL like data access, query ex-
ecution speed, and memory requirements differ between
application domains like data warehouses and embed-
ded systems. Various researchers have shown the need
for configurability in many areas of DBMS [6, 13, 17].
We therefore need the ability to select only the func-
tionality we need in database products in general and
SQL in particular.

Software product line engineering (SPLE) is a soft-
ware engineering approach that considers
aforementioned issues of products of similar kind made
for a specific market segment and differing in features.
A set of such products is called a software product line
(SPL) [18]. In SPLE, products are identified in terms
of features which are user-visible characteristics of a
product [12, 9]. Decomposing SQL in terms of fea-
tures, that can be composed to obtain different SQL
dialects, can be beneficial and insightful not only in
managing features of SQL itself but also in database
technology of embedded and real time systems. A cus-
tomizable SQL and a customizable database manage-
ment system is a better option than using conventional
database products for embedded systems. Embedded
and real time systems have different characteristics and
performance requirements than the general computing
systems due to restricted hardware and frequent use of
certain kinds of queries such as projection and aggrega-
tion [6]. Embedded systems like various hardware ap-
pliances, peer-to-peer, and stream based architectures
for embedded devices use shared information resources
and require declarative query processing for resource
discovery, caching and archiving, etc. [13]. Query pro-
cessing for sensor networks requires different semantics
of queries as well as additional features than provided
in SQL standards [14]. A feature decomposition of SQL
can be used to create a ‘scaled down’ version of SQL ap-
propriate for such applications, by establishing a prod-
uct line architecture for SQL variants.

In this paper, we propose that SPL research is ca-
pable of providing answers to the problems of manag-
ing features in database products such as SQL engines.

29

We present an approach for a customizable SQL parser
based on product line concepts and a decomposition of
SQL into features. We show how different features of
SQL are obtained and how these features can be com-
posed to create different SQL parsers.

2. BACKGROUND

2.1 Structured Query Language
SQL is a database query language used for formulat-

ing statements that are processed by a database man-
agement system to create and maintain a database [21].
The most commonly used SQL query is the SELECT
statement which can retrieve data from one or more
tables in a database. This data can be restricted us-
ing conditional statements in the WHERE clause. SE-
LECT can group related data using the GROUP BY
clause and restrict the grouped data with the HAV-
ING clause. It can order or sort the data based on
different columns using the ORDER BY clause [15].
SQL contains many statements to create and manip-
ulate database objects. Since its first standardization
in 1986, more and more functionality is being included
in SQL in each subsequent standard. The latest edi-
tion of the SQL standard, referred to as SQL:2003, sup-
ports diverse functionality such as call level interfacing,
foreign-data wrappers, embedding SQL in Java, busi-
ness intelligence and data warehousing functions, sup-
port for XML, new data types, etc.

The vast scope of SQL’s functionality has led many
researchers to advocate the usage of a ‘scaled down’
version of SQL, especially for embedded systems [6, 13,
8]. Embedded systems have many hardware limitations
such as small RAM, small stable storage, and high data
read/write ratio. Also the applications where embedded
systems are used, e.g., healthcare and bank cash cards,
need only a small set of queries like select, project,
views, and aggregations. A standard called Structured
Card Query Language (SCQL) by ISO considers inter-
industry commands for use in smart cards [11] with re-
stricted functionality of SQL. Some database systems
and SQL engines, distinguished as ‘tiny’, have been pro-
posed to address this issue, e.g., the TinyDB1 database
management system for sensor networks. TinyDB con-
tains TinySQL language for querying sensor networks.
TinySQL has a limited functionality compared to SQL
such as single table in FROM clause, no column alias
in SELECT clause, and sensor networks specific query
constructs such as epoch duration and sample period
clause.

While the standardization process shows how SQL
has increased in size and complexity in terms of features
provided, efforts for ‘scaled down’ versions indicate a
need to control and manipulate features of SQL.
1http://telegraph.cs.berkeley.edu/tinydb/

2.2 Software Product Line Engineering
SPLE aims at developing software applications by

identifying and building reusable assets in the domain
engineering and implementing mass customization in
the application engineering [18]. The feature model-
ing activity applied to systems in a domain to cap-
ture commonalities and variabilities in terms of features
is known as feature-oriented decomposition. Feature-
oriented decomposition is carried out in the analysis
phase of domain engineering. A feature is any end-user-
visible, distinguishable and functional or non-functional
characteristic of a concept that is relevant to some stake-
holder [9, 10]. In modeling the features of SQL (specifi-
cally SQL:2003), we take the view of features as the end-
user-visible and distinguishable characteristics of SQL.
Feature diagrams [12, 9] are used to model features in
a hierarchical manner as a tree. The root of the tree
represents a concept and the child nodes represent fea-
tures. The hierarchical structure of a feature diagram
indicates that there is a parent child relationship be-
tween the feature nodes. A feature diagram contains
various types of features such as mandatory, optional,
alternative features, AND features, and OR features.
A feature instance is a description of different feature
combinations obtained by including the concept node
of the feature diagram and traversing the diagram from
the concept. Depending on the type of the feature node,
the node becomes part of the instance description [9].

2.3 Feature-Oriented Programming
Feature-oriented programming (FOP) [19] is the study

of feature modularity and how to use it in program syn-
thesis [2]. It treats features as first-class entities in de-
sign and implementation of a product line. A complex
program is obtained by adding features as incremental
details to a simple program. The basic ideas of FOP
were first implemented in GenVoca [4] and Algebraic Hi-
erarchical Equations for Application Design (AHEAD)
[5]. AHEAD uses the Jak language, which is a superset
of the Java language, for feature-oriented programming.
In AHEAD, a programming language and language ex-
tensions are defined in terms of a base grammar and
extension grammars. Grammars specific to both the
language and the language extensions are described us-
ing the Bali grammar specification language. Bali can
be used to specify sub-grammars that can be shared
and reused. As a grammar specification language, Bali
allows specifying extra constructs for BNF specifica-
tion such as labels to name the production rules in a
grammar. Grammars written in Bali can be composed
to specify language extensions and language combina-
tions2. A Bali grammar can import definitions for non-
terminals from other grammars. Syntax extension and

2http://www.cs.utexas.edu/users/schwartz/

30

the corresponding semantic actions are implemented sep-
arately using the Javacc3 parser generator and the Jak
language respectively. Features are treated as collab-
orations among classes and composed using Jampack
and Mixin tools [5].

3. CUSTOMIZABILITY FOR SQL
Customizability for SQL means that only the needed

functionality, such as only some specific SQL statement
types, is present in the SQL engine. The concepts of fea-
tures and product lines can be applied to the SQL lan-
guage so that composition of different features leads to
different parsers for SQL. We base our approach for cre-
ating a customizable parser for
SQL:2003 on the idea of composing sub-grammars to
add extra functionality to a language from the Bali ap-
proach as stated above. For a customizable SQL parser,
we consider LL(k) grammars which are a type of con-
text free grammars. Terminal symbols are the elemen-
tary symbols of the language defined by such a gram-
mar while the nonterminal symbols are set of strings
of terminals also known as syntactic variables [1]. Ter-
minals and nonterminals are used in production rules
of the grammar to define substitution sequences. From
a features and feature diagrams perspective, the pro-
cess of feature-oriented decomposition and feature im-
plementation is realized in two broad stages [20]. In the
first stage, the specification of SQL:2003 is modeled in
terms of feature diagrams. Given the feature diagram
of a particular construct of SQL:2003 that needs to be
customized, we need to create the LL(k) grammar that
captures the feature instance description. This ensures
that the specific feature which we want to add to the
original specification is included as well. In the second
stage, having obtained LL(k) grammars for the base
and extension features separately, we compose them to
obtain the LL(k) grammar which contains the syntax
for both the base and extension features. With a parser
generator, we obtain a parser which can effectively parse
the base as well as extension specification for a given
SQL construct.

We add semantic actions to the parser code thus gen-
erated using Jak and other feature-oriented program-
ming tools, effectively creating a SQL:2003 preproces-
sor. In the following sections we explain decomposition
of SQL:2003 into features and composition of these fea-
tures.

3.1 Decomposing SQL:2003
For the feature-oriented decomposition of SQL:2003,

we use various SQL:2003 standards ISO/IEC 9075 -
(n):2003 which define the SQL language. SQL Frame-
work [16] and SQL Foundation [15] encompass the min-

3https://javacc.dev.java.net/

imum requirements of the SQL. Other parts define ex-
tensions.

SQL statements are generally classified by their func-
tionality as data definition language statements, data
manipulation language statements, data control lan-
guage statements, etc. [15]. Therefore, we arranged
the top level features for SQL:2003 at different levels of
granularity with the basic decomposition guided by the
classification of SQL statements by function as found in
[15]. The feature diagram for features of SQL:2003 is
based on the BNF grammar specification of SQL:2003
and other information given in SQL Foundation.

We use the BNF grammar of SQL for constructing the
feature diagrams based on the following assumptions:

• The complete SQL:2003 BNF grammar represents
a product line, in which various sub-grammars rep-
resent features. Composing these features creates
products of this product line, namely different vari-
ants of SQL:2003.

• A nonterminal may be considered as a feature only
if the nonterminal clearly expresses an SQL con-
struct. Mandatory nonterminals are represented
as mandatory features. Optional nonterminals are
represented as optional features.

• The choices in the production rule are represented
as OR features.

• A terminal symbol is considered as a feature only if
it represents a distinguishable characteristic of the
feature under consideration apart from the syntax
(e.g., DISTINCT and ALL keywords in a SELECT
statement signify different features of the SELECT
statement).

The grammar given in SQL Foundation is useful in
understanding the overall structure of an SQL construct,
or what different SQL constructs constitute a larger
SQL construct. This approach may also be useful in
general to carry out a feature decomposition of any
programming language as the grammar establishes the
basic building blocks of any programming language.
The most coarse-grained decomposition is the decom-
position of SQL:2003 into various constituent packages.
We have chosen to further decompose SQL Foundation,
since it contains the core of SQL:2003. Overall 40 fea-
ture diagrams are obtained for SQL Foundation with
more than 500 features. Other extension packages of
SQL:2003 can be similarly decomposed. Figures 1 and 2
show the features Query Specification(representing SE-
LECT statement) and the feature Table Expression re-
spectively.

To obtain the sub-grammars corresponding to fea-
tures, we refer to the feature diagram for the given fea-
ture. Based on the feature diagram, we create LL(k)
grammars for each feature in the feature instance de-
scription using the original SQL:2003 BNF specifica-
tion for Query Specification (cf. Section 7.12 in SQL

31

Query

Specification

Set

Quantifier

Table

Expression
Select List

Select Sublist

Derived

Column

Asterisk

AS Clause

[1..*]

ALL DISTINCT

Figure 1: Query Specification Feature Diagram.

Table

Expression

From Clause
Where

Clause

Group By

Clause

Having

Clause

Window

Clause

Figure 2: Table Expression Feature Diagram.

Foundation). These sub-grammars are used later dur-
ing composition to obtain a grammar that can parse
various SQL constructs represented by corresponding
features. We represent a grammar and the tokens sepa-
rately. Accordingly, for each sub-grammar we also cre-
ate a file containing various tokens used in the grammar.

3.2 Composing SQL:2003 Features
During our work on a customizable parser for SQL:2003,

we found that the tool Balicomposer, which is used
for composing the Bali grammar rules, is restrictive
in expressing the complex structure of SQL grammar
rules. Bali uses its own notation for describing lan-
guage and extension grammars which are converted to
LL(k) grammars as required by the Javacc parser gen-
erator. We instead use the LL(k) grammars with ad-
ditional options used by the ANTLR4 parser generator
in our prototype. In order to create an SQL engine, we
also need the feature-oriented programming capability
already present in the form of Jak language and Bali
related tools Mixin and Jampack.

We use the feature diagrams obtained in the decom-
4http://www.antlr.org/

position to create a feature model from which different
features constituting the parser may be selected. Such a
parser for SQL:2003 can selectively parse precisely those
SQL:2003 statements which are represented as features
in feature diagrams under consideration. We explain
this with an example.

Suppose that we want to create a parser for the SE-
LECT statement in SQL:2003 represented by the Query
Specification feature (cf. Figure 1). Specifically we
want to implement a feature instance description of
{Query Specification, Select List, Select Sublist (with
cardinality 1), Table Expression} with the Table Ex-
pression feature instance description, {Table Expres-
sion, From Clause, Table Reference (with cardinality
1)}. We would proceed as follows:

1. A feature tree of the SELECT statement presents
various features of the statement to the user. Se-
lection of different subfeatures of the SELECT
statement is equivalent to creating a feature in-
stance description.

2. To create a parser for these features, we make use
of the sub-grammars and token files created dur-
ing the decomposition. We compose these sub-
grammars to one LL(k) grammar. Similarly, cor-
responding token files are composed to a single
token file.

3. Using the ANTLR parser generator, we create the
parser with the composed grammar. The parser
code generated is specific to the features we se-
lected in the first step. That is, it is capable of
parsing precisely the features in the feature in-
stance description for which we created LL(k) gram-
mars.

Thus composing the sub-grammars for the Query Spec-
ification (cf. Figure 1) feature which represents an SQL
SELECT statement, the optional Set Quantifier feature
of Query Specification and the optional Where Clause
feature of the Table Expression (cf. Figure 2) feature
which itself is a mandatory feature of Query Specifi-
cation, gives a grammar which can essentially parse a
SELECT statement with a single column from a single
table with optional set quantifier (DISTINCT or ALL)
and optional where clause. This procedure can be ex-
tended to other statements of SQL:2003, first mapping
features to sub-grammars and then composing them to
obtain a customizable parser.

In composing LL(k) grammars we must consider the
treatment of nonterminals and tokens. The treatment
of nonterminals is most involved. We have provided
composition mechanisms for various production rules
with the same nonterminal, for composition of optional
nonterminals, and for composing complex sequences of
nonterminals. Production rules in the grammar may or

32

may not contain choices for the same nonterminal, e.g.,
A: B | C | D and A: B. The composition of production
rules labeled with the same nonterminal is carried as
follows:

• If the new production contains the old one, then
the old production is replaced with the new pro-
duction, e.g., in composing A: BC with A: B, the
production B is replaced with BC.

• If the new production is contained in the old one,
then the old production is left unmodified, e.g., in
composing A: B with A: BC, the production BC
is retained.

• If the new and old production rules defer, then
they are appended as choices, e.g., in composing
A: B with A: C, productions B and C are appended
to obtain A : B | C.

We compose any optional specification within a produc-
tion after the corresponding non optional specification.
A: B and A : B[C] or A : B and A : [C]B can be composed
in that order only. Some production rules in the gram-
mar may contain complex lists as productions. Com-
plex lists are of the form ‘<NT> [<comma> <NT>
...]’. In the composer for the prototype, if features
to be composed contain a sublist and a complex list,
e.g., A: B and A: B [“,” B] respectively, then these are
composed sequentially with the sublist being composed
ahead of the complex list.

A feature may require other features for correct com-
position. Such features constraints are expressed as ‘re-
quires’ or ‘excludes’ conditions on features. We use the
notion of composition sequence that indicates how var-
ious features are included or excluded.

4. RELATED WORK
Extensibility of grammars is also subject to current

research. Batory et al. provide an extensible Java gram-
mar based on an application of FOP to BNF gram-
mars [3]. Our work on decomposing the SQL grammar
was inspired by their work. Initially, we tried to use
the Bali language and accompanied tools to decompose
the SQL grammar. The language extension approach of
Bali clearly separates the syntax extension and the im-
plementation of semantic actions. However, given the
complexity of SQL:2003 grammar, we cannot achieve
the customizability that we need by using Bali [20]. We
therefore created a new compositional approach based
on ANTLR grammars.

Bravenboer et al. provide with MetaBorg an ap-
proach for extensible grammars [7]. Their aim is to
extend an existing language with new syntax from a
different language. For that reason they need a parsing
approach that can handle various context free gram-
mars simultaneously because multiple languages may

be combined producing various ambiguities. Since we
are decomposing only SQL, a single language, we can
use the common approach of employing a separate scan-
ner which would be insufficient for their goal. They use
Syntax Definition Formalism (SDF) to achieve modu-
larity, although the modularity of SDF grammars can
be attributed to scanner-less generalized LR (SGLR)
parsing mechanism used in MetaBorg [7]. The no-
tion of inheritable grammar modules in SDF also oc-
curs in Bali. We provide the mechanisms of adding,
removing and modifying the production rules in gram-
mar but not inheritable grammars at this point. Dis-
ambiguation mechanism of the Metaborg approach
consists of priority between productions, reject/prefer
mechanisms for derivations, enforcing associativity for
operators. Similar disambiguation constructs are also
present in ANTLR in terms of syntactic and semantic
predicates.

5. CONCLUSIONS
Features of SQL:2003 are user-visible and distinguish-

able characteristics of SQL:2003. The complete gram-
mar of SQL:2003 can be considered as a product line,
where sub-grammars denote features that can be com-
posed to obtain customized parsability. In addition to
decomposing SQL by statement classes, it is possible
to classify SQL constructs in different ways, e.g., by
the schema element they operate on. We propose that
different classifications of features lead to the same ad-
vantages of using the feature concept. We have created
40 feature diagrams for SQL Foundation representing
more than 500 features. Other extension packages of
SQL can be similarly decomposed into features. We
have created different prototype parsers by composing
different features. Currently we are creating an imple-
mentation model and a user interface presenting vari-
ous SQL statements and their features. When a user
selects different features, the required parser is created
by composing these features. Although SPLE and FOP
concepts have been applied to programming language
extension as in Bali, our approach is unique in that
these concepts have been applied to SQL:2003 for the
first time to obtain customizable SQL parsers. Modu-
larity and disambiguation constructs for given type of
grammars depend largely on the parsers and parser gen-
erators used. Similarly implementation of semantics for
given language depends on the generated parser. Some
parsers represent production rules in the grammar as
methods whereas some other parsers represent these as
classes. We surmise that the best approach will depend
on ease of implementation of semantics. One of our
future aims is to find out what kind of modularity of
grammars and what kind of parsing mechanism is most
suitable for feature-oriented extension of SQL.

33

Acknowledgments
Norbert Siegmund and Marko Rosenmüller are funded
by German Research Foundation (DFG), Project
SA 465/32-1. The presented work is part of the FAME-
DBMS project5, a cooperation of Universities of Dort-
mund, Erlangen-Nuremberg, Magdeburg, and Passau,
funded by DFG.

6. REFERENCES
[1] A. V. Aho, M. S. Lam, R. Sethi, and J. D.

Ullman. Compilers: Principles, Techniques, and
Tools (2nd Edition). Addison Wesley, 2006.

[2] D. Batory. A Tutorial on Feature-oriented
Programming and Product-lines. In Proceedings
of the 25th International Conference on Software
Engineering, pages 753–754, Washington, DC,
USA, 2003. IEEE Computer Society.

[3] D. Batory, B. Lofaso, and Y. Smaragdakis. JTS:
Tools for Implementing Domain-Specific
Languages. In Proceedings of the International
Conference on Software Reuse, pages 143–153.
IEEE Computer Society, 1998.

[4] D. Batory and S. O’Malley. The Design and
Implementation of Hierarchical Software Systems
with Reusable Components. ACM Transactions
on Software Engineering and Methodology,
1(4):355–398, 1992.

[5] D. Batory, J. N. Sarvela, and A. Rauschmayer.
Scaling Step-Wise Refinement. IEEE Transactions
on Software Engineering, 30(6):355–371, 2004.

[6] C. Bobineau, L. Bouganim, P. Pucheral, and
P. Valduriez. PicoDMBS: Scaling Down Database
Techniques for the Smartcard. In Proceedings of
the International Conference on Very Large Data
Bases, pages 11–20. Morgan Kaufmann, 2000.

[7] M. Bravenboer and E. Visser. Concrete Syntax
for Objects: Domain-specific Language
Embedding and Assimilation Without
Restrictions. In Proceedings of the International
Conference on Object-Oriented Programming,
Systems, Languages, and Applications, pages
365–383. ACM Press, 2004.

[8] S. Chaudhuri and G. Weikum. Rethinking
Database System Architecture: Towards a
Self-Tuning RISC-Style Database System. In
A. E. Abbadi, M. L. Brodie, S. Chakravarthy,
U. Dayal, N. Kamel, G. Schlageter, and K.-Y.
Whang, editors, Proceedings of 26th International
Conference on Very Large Data Bases
(VLDB’00), pages 1–10. Morgan Kaufmann, 2000.

[9] K. Czarnecki and U. Eisenecker. Generative
Programming: Methods, Tools, and Applications.
Addison-Wesley, 2000.

5http://fame-dbms.org

[10] K. Czarnecki, S. Helsen, and U. W. Eisenecker.
Formalizing cardinality-based feature models and
their specialization. Software Process:
Improvement and Practice, 10(1):7–29, 2005.

[11] International Organization for Standardization
(ISO). Part 7: Interindustry Commands for
Structured Card Query Language (SCQL). In
Identification Cards – Integrated Circuit(s) Cards
with Contacts, ISO/IEC 7816-7, 1999.

[12] K. Kang, S. Cohen, J. Hess, W. Novak, and
A. Peterson. Feature-Oriented Domain Analysis
(FODA) Feasibility Study. Technical Report
CMU/SEI-90-TR-21, Software Engineering
Institute, Carnegie Mellon University, 1990.

[13] M. L. Kersten, G. Weikum, M. J. Franklin, D. A.
Keim, A. P. Buchmann, and S. Chaudhuri. A
Database Striptease or How to Manage Your
Personal Databases. In Proceedings of the
International Conference on Very Large Data
Bases, pages 1043–1044. Morgan Kaufmann, 2003.

[14] S. R. Madden, M. J. Franklin, J. M. Hellerstein,
and W. Hong. TinyDB: An Acquisitional Query
Processing System for Sensor Networks. ACM
Transactions on Database Systems, 30(1):122–173,
March 2005.

[15] J. Melton. Working Draft : SQL Foundation .
ISO/IEC 9075-2:2003 (E)
5WD-02-Foundation-2003-09, ISO/ANSI, 2003.

[16] J. Melton. Working Draft : SQL Framework .
ISO/IEC 9075-1:2003 (E)
5WD-01-Framework-2003-09, ISO/ANSI, 2003.

[17] D. Nyström, A. Tešanović, M. Nolin,
C. Norström, and J. Hansson. COMET: A
Component-Based Real-Time Database for
Automotive Systems. In Proceedings of the
Workshop on Software Engineering for
Automotive Systems, pages 1–8. IEEE Computer
Society, 2004.

[18] K. Pohl, G. Böckle, and F. van der Linden.
Software Product Line Engineering : Foundations,
Principles, and Techniques . Springer, 1998.

[19] C. Prehofer. Feature-Oriented Programming: A
Fresh Look at Objects. In Proceedings of the
European Conference on Object-Oriented
Programming, volume 1241 of Lecture Notes in
Computer Science, pages 419–443. Springer, 1997.

[20] S. Sunkle. Feature-oriented Decomposition of
SQL:2003. Master’s thesis, Department of
Computer Science, University of Magdeburg,
Germany, 2007.

[21] R. F. van der Lans. Introduction to SQL:
Mastering the Relational Database Language,
Fourth Edition/20th Anniversary Edition.
Addison-Wesley Professional, 2006.

34

Architectural Concerns for Flexible Data Management

Ionut Emanuel Subasu, Patrick Ziegler, Klaus R. Dittrich, Harald Gall
Department of Informatics, University of Zurich
{subasu,pziegler,dittrich,gall}@ifi.uzh.ch

ABSTRACT
Evolving database management systems (DBMS) towards
more flexibility in functionality, adaptation to changing re-
quirements, and extensions with new or different compo-
nents, is a challenging task. Although many approaches
have tried to come up with a flexible architecture, there
is no architectural framework that is generally applicable to
provide tailor-made data management and can directly inte-
grate existing application functionality. We discuss an alter-
native database architecture that enables more lightweight
systems by decomposing the functionality into services and
have the service granularity drive the functionality. We pro-
pose a service-oriented DBMS architecture which provides
the necessary flexibility and extensibility for general-purpose
usage scenarios. For that we present a generic storage ser-
vice system to illustrate our approach.

1. INTRODUCTION
Current Database Management Systems (DBMS) are ex-
tremely successful software products that have proved their
capabilities in practical use all over the place. Also from a
research point of view they show a high degree of maturity
and exploration. Despite all progress made so far and de-
spite all euphoria associated with it, we begin to realize that
there are limits to growth for DBMS, and that flexibility is
an essential aspect in DBMS architecture.

Over time DBMS architectures have evolved towards flexi-
bility (see Figure 1). Early DBMS were mainly large and
heavy-weight monoliths. Based on such an architecture, ex-
tensible systems were developed to satisfy an ever growing
need for additional features, such as new data types and
data models (e.g., for relational and XML data). Some of
these systems allowed extensibility through application front
ends at the top level of the architecture [4, 20, 22]. A sim-
ilar approach is taken by aspect-oriented object database
systems such as SADES [2], which support the separation
of data management concerns at the top level of DBMS ar-
chitecture. Based on this, further aspects can be added to

the database as required. By using a monolithic DBMS
structure, however, attempts to change DBMS internals will
hardly succeed, due to the lack of flexibility.

Extensible

DBM S

Com ponent
DBM S

M onolithical

DBM S
 A dap tab le

D B M S

Figure 1: Evolution of DBMS architectures

In response to this, the next step in the evolution of DBMS
architecture was the introduction of Component Database
Systems (CDBS) [7]. CDBS allow improved DBMS flexibil-
ity due to a higher degree of modularity. As adding further
functionality to the CDBS leads to an increasing number of
highly dependent DBMS components, new problems arise
that deal with maintainability maintainability, complexity,
and predictability of system behavior.

More recent architectural trends apply concepts from inter-
face and component design in RISC approaches to DBMS
architectures [6]. RISC style database components, offering
narrow functionality through well-defined interfaces, try to
make the complexity in DBMS architecture more manage-
able. By narrowing component functionality, the behavior
of the whole system can be more easily predicted. However,
RISC approaches do not address the issue of integrating ex-
isting application functionality. Furthermore, coordinating
large amounts of fine-grained components can create serious
orchestration problems and large execution workflows.

Other approaches [13] try to make DBMS fit for new ap-
plication areas, such as bio-informatics, document/content
management, world wide web, grid, or data streams, by ex-
tending them accordingly. These extensions are customized,
fully-fledged applications that can map between complex,
application-specific data and simpler database-level repre-
sentations. In this way, off-the-shelf DBMS can be used to
build specialized database applications. However, adapting
DBMS through a growing number of domain specific ap-
plications causes increasing costs, as well as compatibility
and maintenance problems [21]. Such extensions can lead to
hard wired architectures and unreliable systems [14].

The DBMS architecture evolution shows that, despite many
approaches try to adapt the architecture, there is no ar-
chitectural framework that is generally applicable to pro-

35

vide tailor made data management and directly integrate
existing application functionality. In addition, none of the
existing approaches can provide sufficient predictability of
component behavior. Finally the ability to integrate ex-
isting application functionality cannot be achieved without
requiring knowledge about component internals. These as-
pects, however, are essential for a DBMS architecture to
support a broad range of user requirements, ranging from
fully-fledged extended DBMS to small footprint DBMS run-
ning in embedded system environments. In consequence of
that, the question arises whether we should still aim at an
ever increasing number of system extensions, or whether it
is time to rethink the DBMS approach architecturally.

In [23] we introduced a service based DBMS architecture
which is based on the concepts of Service-Oriented Archi-
tecture (SOA) [15]. We argue that database services in the
spirit of SOA are a promising approach to bring flexibility
into DBMS architecture, as they are an adequate way to
reduce or extend DBMS functionality as necessary to meet
specific requirements. In this sense, we make DBMS archi-
tecture capable of adapting to specific needs, and, conse-
quently, increase its ”fitness for use”.

In this paper, we focus on the notion of flexibility in DBMS
architecture. We take a broad view on database architecture
and present major requirements for a flexible DBMS archi-
tecture. Based on this, we propose a service oriented DBMS
architecture which provides the necessary flexibility and ex-
tensibility for general-purpose usage scenarios. Instead of
taking a bottom up approach by extending the architecture
when needed, we use a top down approach and specialize
the architecture when required. The main feature of our ar-
chitecture is its flexibility and we do not primarily focus on
achieving very high processing performance.

The remainder of the paper is structured as follows. In the
next section we present aspects of flexibility that are relevant
for extensible and flexible DBMS architectures. Section 3 in-
troduces our Service Based Data Management System (SB-
DMS) architecture designed to meet these requirements. We
illustrate and discuss our approach using examples in Sec-
tion 4 and finally conclude in Section 5.

2. ASPECTS OF FLEXIBILITY
From a general view of the architecture we can see three
main aspects that have to be addressed to achieve our goals:
(1) extend the architecture with specialized functionality, (2)
handle missing or erroneous parts, and (3) optimize the ar-
chitecture functionality by allowing it to do the same task in
different ways, according to user requirements or current sys-
tem and architecture configurations. Note that while there
may be other concerns, such as security, ease of maintain-
ability, reliability, or system performance our focus in this
paper is on the three aspects mentioned above, as flexibility
defines the general character of an architecture.

Following the dictionary definition, “flexibility” can be inter-
preted as (1) admitting of being turned, bowed, or twisted
without breaking or as (2) capable of being adapted [19].
This shows that there is not an exact way or metric to mea-
sure or increase the “flexibility” of an architecture. The gen-
eral character of the term can also be seen in the IEEE

definition [1] which sees flexibility as the ease with which
a system or component can be modified for use in appli-
cations or environments other than those for which it was
specifically designed.

From a different perspective, system flexibility can be seen
as the system’s capability of being extensible with new com-
ponents and specializations. Here, “flexibility” refers to the
ease with which a system or component can be modified to
increase its storage or functional capacity [1]. Extensibility
itself, however, does not suffice to create a flexible architec-
ture because it neglects the case of downsizing the architec-
ture. Despite of this, extensibility can be considered as a
subcase of flexibility. If the architecture is not able to en-
able the appropriate changes and adapt to the environment
we say that it has limited flexibility.

To provide a systematic view of the architecture flexibil-
ity, we have to consider different aspects of flexibility [16].
From the above definitions and the general character of the
architecture, the following main aspects of flexibility can be
considered:

• Flexibility by selection refers to the situation in which
the architecture has different ways of performing a de-
sired task. This is the case when different services
provide the same functionality using the same type of
interfaces. In this scenario no major changes at the
architectural level are required.

• Flexibility by adaptation handles the case of absent or
faulty components that cannot be replaced. Here, ex-
isting internal instances of the architecture that pro-
vide the same functionality can be adapted to cope
with the new situation.

• Flexibility by extension allows the system to be adapted
to new requirements and optimizations that were not
fully foreseen in the initial design.

System quality can be defined as the degree to which the
system meets the customer needs or expectations [1]. As
extensions can increase the applicability of a system, flexi-
bility and extensibility are important aspects of the quality
of an architecture, which can be described as its ”fitness for
use”. To support tailored “fitness for use”, future architec-
tures should put more emphasis on improving their flexibil-
ity and extensibility according to user needs. In this way
the architecture will have the possibility to be adapted to
a variety of factors, such as the environment in which the
architecture is deployed (e.g., embedded systems or mobile
devices), other installed components, and further available
services. Some users may require less functionality and ser-
vices; therefore the architecture should be able to adapt to
downsized requirements as well.

3. THE SBDMS ARCHITECTURE
Today, applications can extend the functionality of DBMS
through specific tasks that have to be provided by the data
management systems; these tasks are called services and al-
low interoperability between DBMS and other applications

36

[11]. This is a common approach for web-based applica-
tions. Implementing existing DBMS architectures from a
service approach can introduce more flexibility and exten-
sibility. Services that are accessible through a well defined
and precisely described interface enable any application to
extend and reuse existing services without affecting other
services. In general, Service Oriented Architecture (SOA)
refers to a software architecture that is built from loosely
coupled services to support business processes and software
users. Typically, each resource is made available through in-
dependent services that can be distributed over computers
that are connected through a network, or run on a single
local machine. Services in the SOA approach are accessed
only by means of a well defined interface, without requir-
ing detailed knowledge on their implementation. SOAs can
be implemented through a wide range of technologies, such
as RPC, RMI, CORBA, COM, or web services, not making
any restrictions on the implementation protocols [10]. In
general, services can communicate using an arbitrary pro-
tocol; for example, a file system can be used to send data
between their interfaces. Due to loose coupling, services are
not aware of which services they are called from; further-
more, calling services does not require any knowledge on
how the invoked services complete their tasks.

In [23] we have introduced a Service Based Data Manage-
ment System (SBDMS) architecture that can support tai-
lored extensions according to user requirements. Founding
the architecture on the principles of SOA provides the ar-
chitecture with a higher degree of flexibility and brings new
methods for adding new database features or data types. In
the following we present the architecture using components,
connectors, and configurations, as customarily done in the
field of software architectures [3].

3.1 Architectural Components
Our SBDMS architecture is organized into general available
functional layers (see Figure 2), where each layer contains
specialized services for specific tasks:

Storage

Services

Access

Services

Data

Services

Aditional

 Extension

 Services

Extension Services
 (streaming , XML , procedures ,

queries , replication ...)

Composed

 Service

...Other services...

Service

 Service

Interaction

Legend:

Figure 2: The SBDMS Architecture [23]

• Storage Services work at byte level and handle the
physical specification of non-volatile devices. This in-
cludes services for updating and finding data.

• Access Services manage physical data representations
of data records and access path structure, such as B-

trees. This layer is also responsible for higher level op-
erations, such as joins, selections, and sorting of record
sets.

• Data Services present the data in logical structures like
tables or views.

• Extension Services allow users to design tailored ex-
tensions to manage different data types, such as XML
files or streaming data, or integrate their own applica-
tion specific services.

As main components at a low-level, functional services pro-
vide the basic functions in a DBMS, such as storage services
or query services. These services are managed by coordina-
tor services that have the task to monitor the service activity
and handle service reconfigurations as required. These ser-
vices are handled by resource management processes which
support information about service working states, process
notifications, and manage service configurations. To ensure
a high degree of interoperability between services, adap-
tor services mediate the interaction between services that
have different interfaces and protocols. A predefined set of
adapters can be provided to support standard communica-
tion protocol mediation or standard data types, while spe-
cialized adaptors can be automatically generated or manu-
ally created by the developer [17]. Service repositories han-
dle service schemas and transformational schemas, while ser-
vice registries enable service discovery.

3.2 Architectural Connectors
Connectors have the role to define the type of communi-
cation that takes place between software components [8].
Services present their purpose and capabilities through a
service contract that is comprised of one or more service doc-
uments that describe the service [10]. To ensure increased
interoperability, services are described through a service de-
scription document that provides descriptive information,
such as used data types and semantic description of services
and interfaces. A service policy includes service conditions
of interaction, dependencies, and assertions that have to be
fulfilled before a service is invoked. A service quality de-
scription enables service coordinators to take actions based
on functional service properties. To ensure a high degree of
interoperability, service contract documents should be de-
scribed using open formats, such as WSDL or WS Policy.
Service communication is done through well-defined commu-
nication protocols, such as SOAP or RMI. Communication
protocols can be defined according to user requirements and
the type of data exchanged between services. An important
requirement is to use open protocols, rather than implemen-
tation specific technology. This allows one to achieve a high
degree of abstraction and reduces implementation details in
service contracts, which can reduce service interoperability.

3.3 Architectural Configurations
Configurations of the SBDMS depend on the specific envi-
ronment requirements and on the available services in the
system. To be adaptable, the system must be aware of
the environment in which it is running and the available
resources. Services are composed dynamically at run time
according to architectural changes and user requirements.

37

From a general view we can envision two service phases: the
setup phase and the operational phase. The setup phase con-
sists of process composition according to architectural prop-
erties and service configuration. These properties specify
the installed services, available resources, and service specific
settings. In the operational phase coordinator services moni-
tor architectural changes and service properties. If a change
occurs resource management services find alternate work-
flows to manage the new situation. If a suitable workflow is
found, adaptor services are created around the component
services of the workflows to provide the original functionality
based on alternative services. The architecture then under-
goes a configuration and composition process to set the new
communication paths, and finally compose newly created
services. This is made possible as services are designed for
late binding, which allows a high degree of flexibility and
architecture reconfigurability.

3.4 Architectural Flexibility by Extension
Instead of hard-wiring static components we break down the
DBMS architecture into services, obtaining a loosely cou-
pled architecture that can be distributed. Such a service-
based architecture can be complemented with services that
are used by applications and other services allowing direct
integration and development of additional extensions. In
general, services are dynamically composed to accomplish
complex tasks for a particular client. They are reusable
and highly autonomous since they are accessed only through
well-defined interfaces and clearly specified communication
protocols. This standardisation helps to reduce complexity,
because new components can be built with existing services.
Organising services on layers is a solution to manage and
compose large numbers of services. Developers can then
deploy or update new services by stopping the affected pro-
cesses, instead of having to deal with the whole system, as in
the case of CDBS. System extensibility benefits from the ser-
vice oriented basis of the architecture, due to a high degree
of interoperation and reusability. In this manner future de-
velopment within our architectural framework implies only
low maintenance and development costs.

3.5 Architectural Flexibility by Selection
By being able to support multiple workflows for the same
task, our SBDMS architecture can choose and use them ac-
cording to specific requirements. If a user wants some infor-
mation from different storage services, the architecture can
select the order in which the services are invoked based on
available resources or other criteria. This can be realised
in an automated way by allowing the architecture to choose
required services automatically, either based on a service
description or by the user who manually specifies different
workflows. Using extra information provided by other ser-
vice execution plans, the service coordinators can create task
plans and supervise them, without taking into consideration
an extensive set of variables, because services just provide
functionality and do not disclose their internal structure.

3.6 Architectural Flexibility by Adaptation
Compared with flexibility by selection, flexibility by adap-
tation is harder to achieve. If a service is erroneous or miss-
ing, the solution is to find a substitute. If no other service is
available to provide the same functionality through the same

interfaces, but if there are other components with different
interfaces that can provide the original functionality, the ar-
chitecture can adapt the service interfaces to meet the new
requirements. This adaptation is done by reusing or generat-
ing adaptor services in the affected processes, to ensure that
the service communication is done according to the service
contracts. The main issue here is to make the architecture
aware of missing or erroneous services. To achieve this we
introduce architecture properties that can be set by users
or by monitoring services when existing components are re-
moved or are erroneous. SOA does not provide a general way
to make the architecture aware and adaptable to changes in
the current state of the system. Standardised solutions to
this problems have been proposed by new architectures that
have emerged on the foundations provided by SOA. One
of these is the Service Component Architecture (SCA) [18].
SCA provides methods and concepts to create components
and describe how they can work together. The interactions
between components can be modeled as services, separating
the implementation technology from the provided function-
ality. The most atomic structure of the SCA is the compo-
nent (see Figure 3). Components can be combined in larger
structures forming composites (see Figure 4). Both compo-
nents and composites can be recursively contained.

C om ponent

serv ices properties

referencesIm plem entation - Java

- B P E L

- C om posite

...

Figure 3: SCA Component [18]

Every component exposes functionality in form of one or
more services, providing the number of operations that can
be accessed. Components can rely on other services pro-
vided by other components. To describe this dependency,
components use references. Beside services and references,
a component can define one or more properties. Properties
are read by the component when it is instantiated, allowing
to customize its behaviour according to the current state of
the architecture. By using services and references, a com-
ponent can communicate with other software or components
through bindings. A binding specifies exactly how communi-
cation should be done between the parties involved, defining
the protocol and means of communication that can be used
with the service or reference. Therefore a binding separates
the communication from the functionality, making life sim-
pler for developers and designers [5]. Furthermore, SCA or-

C om posite Z

C om pos ite A

C om posite X C om posite Y

C o m p o n e n t

A

C o m p o n e n t

B

C om pos ite B

im plem entat ion im plem entat ion

Figure 4: SCA Composites [18]

38

ganises the architecture in a hierarchically way, from coarse
grained to fine grained components. This way of organizing
the architecture makes it more manageable and comprehen-
sible [12]. By using component properties, the adaptability
character of the architecture can be easier achieved in a stan-
dardised way. For all these reasons, we include the principles
of SCA into our SBDMS architecture.

3.7 A Storage Service Scenario
To exemplify our approach, we assume a simple storage ser-
vice scenario and demonstrate how the three main aspects of
flexibility from Section 2 can be realised using our proposed
architecture. Figure 5 depicts the situation of adding a new

B u ffe r
C o o rd in a to r

B u ffe r

M a n a g e r

P a g e

M a n a g e r

D is k

M a n a g e r
F ile

M a n a g e r

P a g e
C o o rd in a to r

Figure 5: Flexibility by extension

service to the architecture. The user creates the required
component (e.g., a Page Coordinator, as shown in Figure 5)
and then publishes the desired interfaces as services in the
architecture. From this point on, the desired functionality
of the component is exposed and available for reuse. The
service contract ensures that communication between ser-
vices is done in a standardised way. In this way we abstract
from implementation details and focus on the functionality
provided by the system components. This allows ease of
extensibility.

B u ffe r
C o o rd in a to r

B u ffe r

M a n a g e r

P a g e

M a n a g e r

D is k

M a n a g e r
F ile

M a n a g e r

R e lase

R esources

U se a lte rna te

se rv ice

Figure 6: Flexibility by selection

At some point in time, special events may occur. Assume
that some service S requires more resources. In this case,
S invokes a “Release Resources” method on the coordinator
services to free additional resources (see Figure 6). In our ar-
chitecture component properties can then be set by users or
coordinator services to adjust component properties accord-
ing to the current architecture constraints. In this manner,

other services can be advised to stop using the service due
to low resources.

Coordinator services also have the task to verify the avail-
ability of new services and other resources. In the example in
Figure 6 a service requests more resources. The Buffer Co-
ordinator advises the Buffer Manager to adapt to the new
situation, by setting the appropriate service properties. In
this case the Buffer Manager can use an alternate available
workflow by using other available services that provide the
same functionality. Every component behaves as defined by
the alternate workflows which are managed by service coor-
dinators. If services are erroneous or no longer available, and

P a g e
M a n a g e r

B u ffe r

M a n a g e r

P a g e

M a n a g e r

D is k

M a n a g e r
F ile

M a n a g e r

P age M anager

no t ava ilab le

A dap ted ve rs ion o f P age M anager

Figure 7: Flexibility by adaptation

other services can provide the same functionality, these can
be used instead to complete the original tasks (see Figure 7).
Even if performance may degrade to to increased work load,
the system can continue to operate. If the service interfaces
are compatible,coordinator services will create alternate pro-
cesses that will compose the equivalent services to complete
the requested task, in this way the architecture recomposes
the services. Otherwise adaptor services have to be created
to mediate service interaction.

4. DISCUSSION
To discuss and further illustrate our architectural concepts,
we present two contrasting examples: a fully-fledged DBMS
bundled with extensions and a small footprint DBMS capa-
ble of running in an embedded system environment.

Users with extensive functional requirements benefit from
the ability of our architecture to integrate existing services
that were developed by the user to satisfy his needs. Ap-
plication developers can reuse services by integrating spe-
cialized services from any architectural layer into their ap-
plication. For example developers may require additional
information to monitor the state of a storage service (e.g.,
work load, buffer size, page size, and data fragmentation).
Here, developers invoke existing coordinator services, or cre-
ate customised monitoring services that read the properties
from the storage service and retrieve data. In large scale
architectures multiple services often provide the same func-
tionality in a more or less specialised way. Since services
are monitored by coordinators that supervise resource man-
agement and because service adaptors ensure correct com-
munication between services, changes or errors in the sys-
tem can be detected and alternate workflows and process
compositions can be generated to handle the new situation.

39

If a storage service exhibits reduced performance that no
longer meets the quality expected by the user, our archi-
tecture can use or adapt an alternative storage service to
prevent system failures. Furthermore, storage services can
be dynamically composed in a distributed environment, ac-
cording to the current location of the client to reduce latency
times. To enable service discovery, service repositories are
required. For highly distributed and dynamic settings, P2P
style service information updates can be used to transmit
information between service repositories [9]. An open issue
remains which service qualities are generally important in
a DBMS and what methods or metrics should be used to
quantify them.

In resource restricted environments, our architecture allows
to disable unwanted services and to deploy small collections
of services to mobile or embedded devices. The user can
publish service functionality as web services to ensure a high
degree of compatibility, or can use other communication pro-
tocols that suit his specific requirements. Devices can con-
tain services that enable the architecture to monitor service
activity and functional parameters. In case of a low resource
alert, which can be caused by low battery capacity or high
computation load, our SBDMS architecture can direct the
workload to other devices to maintain the system opera-
tional. Disabling services requires that policies of currently
running services are respected and all dependencies are met.
To ensure this, service policies must be clearly described by
service providers to ensure proper service functioning.

5. CONCLUSIONS
In this paper we proposed a novel architecture for DBMS
that achieves flexibility and extensibility by adopting service-
orientation. By taking a broad view on database architec-
ture, we discussed aspects of flexibility that are relevant for
extensible and flexible DBMS architectures. On this foun-
dation, we designed our SBDMS framework to be generally
applicable to provide tailored data management function-
ality and offer the possibility to directly integrate existing
application functionality. Instead of taking a bottom up
approach by extending an existing DBMS architecture, we
use a top down approach and specialize our architecture to
support the required “fitness for use” for specific application
scenarios, ranging from fully-fledged DBMS with extensive
functionality to small footprint DBMS in embedded systems.
We exemplified how essential aspects of flexibility are met
in our architecture and illustrated its applicability for tailor-
made data management.

In future work we are going to design the proposed archi-
tecture in more detail and define a foundation for concrete
implementations. We plan to take existing light weight
databases, brake them into services, and integrate them into
our architecture for performance evaluations. Testing with
different levels of service granularity will give us insights into
the right tradeoff between service granularity and system
performance in a SBDMS.

6. REFERENCES
[1] IEEE Standard Glossary of Software Engineering

Terminology. IEEE Std 610.12-1990, 10 Dec 1990.

[2] R. Awais. SADES - a Semi-Autonomous Database
Evolution System. In ECOOP ’98: Workshop on

Object-Oriented Technology, pages 24–25. Springer,
1998.

[3] L. Bass and others. Software Architecture in Practice.
AWLP, USA, 1998.

[4] M. Carey et al. The EXODUS Extensible DBMS
Project: An Overview. In Readings in Object-Oriented
Database Systems, pages 474–499. MKP, 1990.

[5] D. Chappel. Introducing SCA. Technical report,
Chappell & Associates, 2007.

[6] S. Chaudhuri and G. Weikum. Rethinking Database
System Architecture: Towards a Self-Tuning
RISC-Style Database System. The VLDB Journal,
pages 1–10, 2000.

[7] K. Dittrich and A. Geppert. Component Database
Systems. Morgan Kaufmann Publishers, 2001.

[8] S. Dustdar and H. Gall. Architectural Concerns in
Distributed and Mobile Collaborative Systems.
Journal of Systems Architecture, 49(10-11):457–473,
2003.

[9] S. Dustdar and W. Schreiner. A Survey on Web
Services Composition. International Journal of Web
and Grid Services, 1(1):1–30, 2005.

[10] T. Erl. SOA Principles of Service Design. PTR, 2007.

[11] A. Geppert et al. KIDS: Construction of Database
Management Systems Based on Reuse. Technical
Report ifi-97.01, University of Zurich, 1997.

[12] M. Glinz et al. The Adora Approach to
Object-Oriented Modeling of Software. In CAiSE
2001, pages 76–92, 2001.

[13] J. Gray. The Revolution in Database System
Architecture. In ADBIS (Local Proceedings), 2004.

[14] T. Härder. DBMS Architecture – New challenges
Ahead. Datenbank-Spektrum (14), 14:38–48, 2005.

[15] S. Hashimi. Service-Oriented Architecture Explained.
Technical report, O’Reilly, 2003.

[16] P. Heinl et al. A Comprehensive Approach to
Flexibility in Workflow Management Systems. WACC
’99, pages 79–88, 1999.

[17] H. R. Motahari Nezhad et al. Semi-automated
adaptation of service interactions. In WWW ’07,
pages 993–1002, 2007.

[18] OASIS. SCA Service Component Architecture,
Specification. 2007.

[19] Oxford Online Dictionary.
http://www.askoxford.com.

[20] H. Schek et al. The DASDBS Project: Objectives,
Experiences, and Future Prospects. IEEE TKDE,
2(1):25–43, 1990.

[21] M. Stonebraker and U. Cetintemel. ”One Size Fits
All”: An Idea Whose Time has Come and Gone. In
ICDE ’05, pages 2–11, 2005.

[22] M. Stonebraker et al. The Implementation of
POSTGRES. IEEE TKDE, 2(1):125–142, 1990.

[23] I. E. Subasu et al. Towards Service-Based Database
Management Systems. In BTW Workshops, pages
296–306, 2007.

40

A New Approach to Modular Database Systems

Florian Irmert
Friedrich-Alexander University

of Erlangen-Nuremberg
Department of Computer

Science
Computer Science 6
(Data Management)

Martensstrasse 3
91058 Erlangen, Germany

florian.irmert@cs.fau.de

Michael Daum
Friedrich-Alexander University

of Erlangen-Nuremberg
Department of Computer

Science
Computer Science 6
(Data Management)

Martensstrasse 3
91058 Erlangen, Germany

michael.daum@cs.fau.de

Klaus Meyer-Wegener
Friedrich-Alexander University

of Erlangen-Nuremberg
Department of Computer

Science
Computer Science 6
(Data Management)

Martensstrasse 3
91058 Erlangen, Germany

kmw@cs.fau.de

ABSTRACT
In this paper we present our approach towards a modularized
database management system (DBMS) whose components
can be adapted at runtime and show the modularization
of a DBMS beneath the record-oriented interface as a first
step. Cross-cutting concerns like transactions pose thereby a
challenge that we answer with aspect-oriented programming
(AOP). Finally we show the implementation techniques that
enable the exchange of database modules dynamically. Par-
ticularly with regard to stateful components we define a ser-
vice adaptation process that preserves and transmits the
component’s state.

Categories and Subject Descriptors
D.2.7 [Software Engineering]: Distribution, Mainte-
nance, and Enhancement; D.2.11 [Software Engineering]:
Software Architectures; D.2.13 [Software Engineering]:
Reusable Software; H.2.4 [Database Management]: Sys-
tems

General Terms
Design, Management

Keywords
Adaptation, availability, service-oriented architecture, com-
ponent replacement, modularity, migration

1. INTRODUCTION
For about 30 years no major company is able to manage
the large volume of information without a database man-
agement system (DBMS). Well known ”generic” database
systems like Oracle or DB2 extend their functionality with
every release. Such commercial database systems are often
developed over many years, and to stand out on the highly

competitive market, a lot of developers are needed to man-
age the extensive development. Although the ”componenti-
zation” [18] of database management systems (DBMS) is a
topic of research since the 90s, today’s DBMSs still consist
of a monolithic database kernel. Such a monolithic architec-
ture increases maintenance and development costs addition-
ally. In this paper we present our ideas towards a modular
generic database. We describe the necessary properties and
present work in progress. Current software engineering prac-
tices like service orientation and loose coupling are used to
structure the design of the DBMS and therewith simplify
the development and maintenance. As a result DBMSs for
specific purpose can be developed much faster and cheaper
compared to a traditional development process.

We aim to design a modular DBMS that can be adapted to
different environments by assembling prefabricated modules.
Therefore we need a kind of DBMS ”construction kid”. For
each ”building block” dependencies to other blocks have to
be defined, and basic modules have to be identified that are
necessary in every DBMS. Then a DBMS can be assembled
by choosing the right modules for the specific task of the
system.

To provide high availability, another challenge is the mod-
ification of modular DBMSs at runtime. We want to add,
exchange, and remove modules while the database system
is running. A possible scenario is the installation of a small
DBMS with only a few features and its extension at runtime
if new features are required. E.g. at the time of installation
of an application a B-tree index is sufficient and therefore
only the B-tree module is installed to save disk space. After
a while a bitmap index would be very helpful. In a run-
time adaptable DBMS the module for the bitmap index can
be installed without stopping the DBMS. Towards this re-
quirement a framework is needed to manage the individual
modules.

2. RELATED WORK
The drawbacks of a monolithic DBMS are presented in [7]:

• DBMS become too complex. It is not possible to main-
tain them with reasonable costs.

• Applications have to pay performance and cost penalty

41

for using unneeded functionality.

• System evolution is more complex, because a DBMS
vendor might not have the resources or expertise to
perform such extensions in a reasonable period of time.

To solve such problems Dittrich and Geppert [7] propose
componentization of DBMSs and identify four different cat-
egories of CDBMSs (component DBMS):

• Plug-in Components. The DBMS implements all stan-
dard functionality, and non-standard features can be
plugged into the system. Examples for this category
are Oracle Database [2], Informix [13] and IBM’s DB2
[6].

• Database Middleware. DBMSs falling in this category
integrate existing data stores, leaving data items under
the control of their original management system, e.g.
Garlic [16], Harmony [15] and OLE DB [4].

• DBMS Services. DBMSs of this type provide function-
ality in standardized form unbundled into services, e.g.
CORBAservices [3].

• Configurable DBMS. DBMSs falling in this category
are similar to DBMS services, but it is possible to
adapt service implementations to new requirements or
to define new services. An example is the KIDS project
[8].

A good overview of these categories can be found in [20].

In recent time service-oriented architecture (SOA) has be-
come a popular buzzword. The principles of SOA are also
suitable for building modular DBMSs. [19] present an ap-
proach towards service-based DBMS. They borrowed the ar-
chitectural levels from Härder [9] and want to include the
advantages introduced by SOA like loosely coupled services.
They have defined four different layers, which are imple-
mented as services. It is argued that DBMS build upon this
architecture is easily extendable because service can be in-
voked when they are needed and in case of failure of services,
alternative services can answer the request. Tok and Bres-
san [21] also introduce a DBMS architecture based on service
orientation, called SODA (Service-Oriented Database Archi-
tecture). In their DBNet prototype web services are used as
the basic building blocks for a query engine.

These approaches do not address the handling of cross cut-
ting concerns (section 3.2) in a modular DBMS and in con-
trast to our approach do not provide runtime adaptation.

3. OUR APPROACH
The major goals of our CoBRA-DB project (Component
Based Runtime Adaptable DataBase) are:

• Modularization of a relational database management
system

• Exchanging modules at runtime

In this section we present work in progress. At first we intro-
duce an educational DBMS called i6db, which is developed
at our department. The i6db lays the foundations for our
recent work towards a modular database system. Then we
present our activities regarding the handling of cross cutting
concerns inside a DBMS and finally we show our approach
concerning runtime adaptation.

3.1 Modularization of database systems
Modularization and the definition of abstract interfaces are
the first steps in order to get modules that can be exchanged
at runtime. The challenge is to identify the appropriate
modules. Härder [9] proposed a multi layer architecture of
DBMSs that is very useful to understand the functionality of
DBMS and to structure the important parts. The proposed
layers are not fine grained enough to map them exactly to
DBMS components; this would limit the dynamic adapta-
tion (section 3.3), because the exchange of a whole layer’s re-
alization would lead to overhead if only small changes would
be required.

In this section we present the architecture of i6db, a DBMS,
which was designed and implemented at the department of
computer science 6 (database systems) at the university of
Erlangen-Nuremberg over the last years. The i6db is writ-
ten in C++ and concentrates on layer abstraction, design
patterns, and loose coupling.

i6db - a database for educational purposes
The i6db was originally designed for educational purposes,
e.g. we set transactions and multi-user handling aside. Re-
garding to Härder’s five level architecture (figure 1) [9] we
have implemented the layer L1 to L4. The query engine can
execute queries based on relational operators. Higher order
query languages like SQL are taught on the basis of existing
databases for educational purposes.

File management

Nonprocedural or
algebraic access

Record-oriented,
navigational access

Record and access
path management

Propagation control

Level of abstraction Objects

Tables, views, tuples

Records, sets,
hierarchies, networks

Physical records,
access paths

Segments, pages

Files, blocks

Tr
an

sa
ct

io
n

M
an

ag
em

en
t

L1

L2

L3

L4

L5

Figure 1: Five layer architecture

The core of i6db consists of seven modules. The module
file is the L1 abstraction (file management) [9], segment
and systembuffer are the L2 abstraction (propagation con-
trol). We assumed page/block-oriented data organization.
All modules of L3 use accordingly the system buffer mod-
ule. At the moment we have four different alternatives for
the implementation of the record manager. There are two
different algorithms (Tuple IDentifier, DataBase key Trans-
lation Table) both with the extension of support of records
that are larger than database pages. The exchange of those
record manager’s realizations is quite simple.

42

Table

table

TableManager

TableManager_Indexed

File

BlockFile

BitmapBlockFile

file

FPA

FPAImpl

fpa

SystemBuffer

SystemBufferImpl

systembuffer

RecordManager

FragmentTIDManager

records

TIDManager

FragmentDBTTManager

DBTTManager

IndirectSegment

Segment
segment

query engine

Index

BTreeIndex

index

Block oriented
processing

L2

L3

L1

L4

Figure 2: Modules of i6db

In figure 2 the large box enframes all realizations whose al-
gorithms are based upon the use of pages. If i6db should be
used as a main memory database, the block organization is
obsolete. Then, all block based algorithms and structures
must be abolished. As indexes and record manager don’t
need block orientation necessarily, the interfaces (Index,
RecordManager) of the L3 (record and access path man-
agement) modules could be used further, but the modules
must be exchanged. The block -tree index, the free place ad-
ministration and all modules that organize records in blocks
must be replaced by structures that are organized in main
memory.

The L4 module (record-oriented, navigational access) table
has two alternatives. The one holds a use-dependency to the
index-module, the other doesn’t. The table-module can be
accessed by the methods that table provides. It depends
solely on the table’s implementation if indexes can be used.
If an index-access method is called and there is no index
available a full table scan has to be performed.

Our query engine can be used for the definition of tables
and indexes. Records can be stored, removed and altered,
too. Queries are defined by a query graph that consists of
implemented relational operators. Due to the formal defini-
tion of relational operators each operator gets a set of input
operators and predicates. Each operator can iterate the re-
sult. There are two table iterators implemented that access
the tables of the table-module either by full-table-scan or
by index-table-scan.

The i6db project lays a solid basis for creating a modular
and adaptable database at least. In future we will integrate
transaction mechanisms. As discussed below transactions
are cross-cutting concerns. With the integration by using
aspect-oriented programming techniques we can provide an
interface that support transaction handling. Then we can

abolish the selfmade query engine and use MySQL 5.1 and
integrate our i6db with its sound architecture as storage
engine of MySQL [1].

3.2 Uncoupling Transactions
Existing approaches propose the incorporation of SOA to
develop a modular DBMS [19, 21]. Modules like the query
engine or layers [9] are realized as services. But cross cutting
concerns like logging or transaction management (figure 1)
make modularization in a full-fledged DBMS difficult, be-
cause e.g. to realize transactions, nearly every module is
involved in the transaction management [14]. A ”transac-
tion object” is created at the beginning of a transaction and
can not be destroyed until the transaction commits. Such
an object could not be realized as a stateless service and
all procedure calls which belong to the statements that are
executed within a transaction must be associated with this
object.

We are currently working on an extraction of the transac-
tional aspect. The DBMS modules should not be aware of
the fact that they are part of a transaction. For a prototype
we have removed the implementation of transaction manage-
ment in SimpleDB [17] and we are currently ”re-integrating”
the transaction support with the help of aspect-oriented pro-
gramming (AOP) [12]. With AOP it is possible to intercept
the methods of the modules and gain all necessary informa-
tion to support transactions without the drawback of direct
coupling. While we are presenting work in progress, there
are still problems to be solved in our prototype, like the
tracing of method invocations during the execution of a SQL
statement.

3.3 Adaptation at runtime
Beside modularization the second major goal of the CoBRA-
DB project is runtime adaptation. There are different sce-

43

narios where runtime adaptation is useful:

• Change a module that contains a bug

• Upgrade the DBMS with new functionality

• Remove unused features to increase performance and
save space

• Change of a set of modules by cross cutting concerns
or multiple changes of different modules as a result in
order to change bigger parts or strategies of a DBMS

An example for a far-reaching upgrade would be adding
transactions management to a running DBMS, which has
not the need for transactions at time of its installation.

We pick up the idea of Cervantes and Hall, who have in-
troduced a service-oriented component model: ”A service-
oriented component model introduces concepts from ser-
vice orientation into a component model. The motivation
for such a combination emerges from the need to introduce
explicit support for dynamic availability into a component
model” [5]. This concept can be used as basis for our work
towards runtime adaptation. DBMS ”modules” are real-
ized as components that provide their functionality as ser-
vices. Some of these modules are mandatory and provide
the DBMS’s core functionality like inserting and querying
data. Other services are optional and can be added or re-
moved depending on the application and the environment,
e.g., if transaction support is not required, the ”transaction
module” is removed.

We do not propose the distribution of services. Remote pro-
cedure calls are much to slow to be used inside a DBMS. The
required components should be able to invoke one another
locally. To accomplish loosely binding a service searches in a
global registry to locate services which are required to fulfill
its role and than these service can be bounded and invoked.

One characteristic of service orientation is the fact that ser-
vice can arrive and disappear at any point in time. Business
applications which rely on specific service are not available
if a mandatory service disappears and can not be replaced
with another adequate service. This behavior is not accept-
able if we are building a DBMS, because if one service of
the DBMS disappears, all depending applications would not
be able to work correctly. With this requirement in mind it
is absolutely necessary for a DBMS which relies on service-
oriented components that these components are available
and their provided services are accessible. To swap services
at runtime, the adaptation has to be done transparently for
all consumers of that service. Obviously some time is needed
to replace a running component with a new implementation.
Therefore the method calls have to be interrupted and redi-
rected to the new component. This ”switch over act” has to
be done in an atomic operation for all services which rely on
the adapting service.

To handle the whole adaptation process we introduce an
Adaptation Manager which coordinates the individual steps.
The process is divided in 3 phases (figure 3). During the

B1a

Store phase Switch phase

State container

B1

Restore phase

Adaptation process

Active reference

Invalid reference

B2

Adaptation manager

Service proxy

store

restore

Blocked invocation

Successful invocation

time

Figure 3: Service adaptation process

store phase the references of all depending service are inval-
idated and the state of the ”old” component is saved in a
special data structure. In the switch phase the state is in-
jected in the new component. Last the references are set to
the new component in the restore phase, and the references
are set to the new component. We describe the adaptation
process in [10] in detail.

To enable the adaptation of aspects at runtime we integrate
a dynamic AOP (d-AOP) framework in our prototype be-
cause d-AOP supports the modification of aspects at run-
time. Therefore we can use the techniques we have presented
in [11] to integrate dynamic AOP into a service-oriented
component model.

4. FUTURE WORK AND CONCLUSION
In the paper we introduced the CoBRA-DB project. The
goal of this project is a modularized runtime adaptable
DBMS. We argued the problems of ”slicing” a database
into loosely coupled components and the challenge regard-
ing cross cutting concerns. We are currently implementing
a prototype framework to adapt components at runtime.
Thereby the state of a component is transferred to the re-
placing component in an atomic step. With the lessons
learned in the i6db project, where we have implemented a
DBMS in C++, we are now going to develop a prototype
in Java. In parallel we remove the transaction management
from a sample DBMS (we use SimpleDB) and reintegrate it
with the help of AOP to provide a foundation for further
modularization. This is a major difference in contrast to
other projects which use SOA to modularize DBMSs. An-
other distinction is the ability to swap modules at runtime
and thereby adapt a DBMS to a changing environment with-
out the need to shutdown the database.

5. REFERENCES
[1] D. Axmark, M. Widenius, P. DuBois, S. Hinz,

M. Hillyer, and J. Stephens. MySQL 5.1
Referenzhandbuch. MySQL, 2007.

[2] S. Banerjee, V. Krishnamurthy, and R. Murthy. All
your data: the oracle extensibility architecture.
Component database systems, pages 71–104, 2001.

[3] R. Bastide and O. Sy. Formal specification of CORBA

44

services: experience and lessons learned. Proceedings
of the 15th ACM SIGPLAN conference on
Object-oriented programming, systems, languages, and
applications, pages 105–117, 2000.

[4] J. A. Blakeley. Data access for the masses through ole
db. SIGMOD Rec., 25(2):161–172, 1996.

[5] H. Cervantes and R. S. Hall. Autonomous adaptation
to dynamic availability using a service-oriented
component model. In ICSE ’04: Proceedings of the
26th International Conference on Software
Engineering, pages 614–623, Washington, DC, USA,
2004. IEEE Computer Society.

[6] J. Cheng, J.; Xu. Xml and db2. Data Engineering,
2000. Proceedings. 16th International Conference on,
pages 569–573, 2000.

[7] K. R. Dittrich and A. Geppert, editors. Component
database systems. Morgan Kaufmann Publishers Inc.,
San Francisco, CA, USA, 2001.

[8] A. Geppert, S. Scherrer, and K. R. Dittrich. KIDS:
Construction of Database Management Systems based
on Reuse. Technical Report ifi-97.01, University of
Zurich, 1997.

[9] T. Härder. DBMS Architecture - the Layer Model and
its Evolution (Part I). Datenbank-Spektrum,
5(13):45–56, 2005.

[10] F. Irmert, T. Fischer, and K. Meyer-Wegener.
Improving availability in a service-oriented component
model using runtime adaptation. University of
Erlangen and Nuremberg, to be published, 2007.

[11] F. Irmert, M. Meyerhöfer, and M. Weiten. Towards
Runtime Adaptation in a SOA Environment.
RAM-SE’07 - 4th ECOOP Workshop on Reflection,
AOP and Meta-Data for Software Evolution,
co-located at the 21th European Conference on
Object-Oriented Programming - ECOOP (Berlin,
Germany), July 2007.

[12] G. Kiczales, J. Lamping, A. Menhdhekar, C. Maeda,
C. Lopes, J.-M. Loingtier, and J. Irwin.
Aspect-oriented programming. In M. Akşit and
S. Matsuoka, editors, Proceedings European
Conference on Object-Oriented Programming, volume
1241, pages 220–242. Springer-Verlag, Berlin,
Heidelberg, and New York, 1997.

[13] M. Olson. DataBlade extensions for
INFORMIX-Universal Server. Proceedings IEEE
COMPCON, 97:143–8, 1997.

[14] A. Rashid. Aspect-Oriented Database Systems.
Springer, 2004.

[15] U. Röhm and K. Böhm. Working Together in
Harmony - An Implementation of the CORBA Object
Query Service and Its Evaluation. In ICDE’99:
Proceedings of the 15th International Conference on
Data Engineering, 23-26 March 1999, Sydney,
Austrialia, pages 238–247, 1999.

[16] M. T. Roth and P. M. Schwarz. Don’t scrap it, wrap
it! a wrapper architecture for legacy data sources. In
M. Jarke, M. J. Carey, K. R. Dittrich, F. H.
Lochovsky, P. Loucopoulos, and M. A. Jeusfeld,
editors, VLDB’97, Proceedings of 23rd International
Conference on Very Large Data Bases, August 25-29,
1997, Athens, Greece, pages 266–275. Morgan
Kaufmann, 1997.

[17] E. Sciore. SimpleDB: a simple java-based multiuser
system for teaching database internals. ACM SIGCSE
Bulletin, 39(1):561–565, 2007.

[18] A. Silberschatz and S. Zdonik. Strategic directions in
database systems - breaking out of the box. ACM
Comput. Surv., 28(4):764–778, 1996.

[19] I. E. Subasu, P. Ziegler, and K. R. Dittrich. Towards
service-based database management systems. In
Datenbanksysteme in Business, Technologie und Web
(BTW 2007), Workshop Proceedings, 5.-6. März 2007,
Aachen, Germany, pages 296–306, 2007.

[20] A. Tesanovic, D. Nystrom, J. Hansson, and
C. Norstrom. Embedded databases for embedded
real-time systems: A component-based approach.
Technical report, Dept. of Computer Science,
Linkoping University, and Dept. of Computer
Engineering, Malardalen University, 2002.

[21] W. H. Tok and S. Bressan. DBNet: A Service-Oriented
Database Architecture. In DEXA ’06: Proceedings of
the 17th International Conference on Database and
Expert Systems Applications, pages 727–731,
Washington, DC, USA, 2006. IEEE Computer Society.

45

	FIN_1.pdf
	Nr.1.doc
	
	Nr.: FIN-01-2008
	Nantes, France, March 29, 2008

	setmdm_final.pdf
	FAME-DBMS: Tailor-made Data Management Solutions for Embedded Systems
	A Relational File System as an Example for Tailor-made DMS
	Flexible Transaction Processing in the Argos Middleware
	Tailor-made Lock Protocols and their DBMS Integration
	Database Servers Tailored to Improve Energy Efficiency
	Generating Highly Customizable SQL Parsers
	Architectural Concerns for Flexible Data Management
	A New Approach to Modular Database Systems

