
Fakultät für Informatik
Otto-von-Guericke-Universität Magdeburg

Nr.: FIN-008-2008

The Causal-Based Software Process Modelling

Karsten Richter, Reiner R. Dumke

Arbeitsgruppe Softwaretechnik

Fakultät für Informatik
Otto-von-Guericke-Universität Magdeburg

Nr.: FIN-008-2008

The Causal-Based Software Process Modelling

Karsten Richter, Reiner R. Dumke

Arbeitsgruppe Softwaretechnik

Impressum (§ 10 MDStV):
Herausgeber:
Otto-von-Guericke-Universität Magdeburg

 Fakultät für Informatik
 Der Dekan

Verantwortlich für diese Ausgabe:
Otto-von-Guericke-Universität Magdeburg
Fakultät für Informatik

Postfach 4120

 39016 Magdeburg
E-Mail:

http://www.cs.uni-magdeburg.de/Preprints.html

Auflage:

Redaktionsschluss:

Herstellung: Dezernat Allgemeine Angelegenheiten,
 Sachgebiet Reproduktion

Bezug: Universitätsbibliothek/Hochschulschriften- und

Tauschstelle

Reiner Dumke

dumke@ovgu.de

81

20.10.2008

The Causal-Based Software Process Modelling

Karsten Richter, Reiner R. Dumke

University of Magdeburg, Dept. of Computer Science, Postfach 4120,
D-39016 Magdeburg, Germany

{richter,dumke}@ivs.cs.uni-magdeburg.de,
http://ivs.cs.uni-magdeburg.de/sw-eng/us/

Contents

1 Semantic Networks in Software Engineering ……..……………………………… 2
1.1 Semantic Networks…….………………………………………………………....…. 2
1.2 Examples in Software Product and Process Descriptions…………….………….… 2
1.3 The Approach of Fenton et al. …………………………………………………..… 8
1.4 Semantic Hierarchies and Levels ………………………………………..…………. 9

2 Causal Models and SE-based Causal Networks ……………..……………………. 11
2.1 Causal Model Definition by Pearl ………………………………………………… 11
2.2 Software Engineering Causalities ………..………………………………….……. 12
2.3 Causal Networks in Software Engineering ……………………………………….. 13
2.4 Reasoning in SE Causal Networks ……………………………………………….. 20

3 Causal Network-Based Process Model (CNPM) ………….…..…..………….…… 27
3.1 The Software Process Modelling …………...…………………………………….... 27
3.2 The CNPM Approach ……………………………………………….…..…………. 31
3.3 CNPM-Based Software Process Analysis…………………….………………….… 37

4 Conclusion and Future Work ………………………………………………………. 45

5 References ………………………………………………………………………….… 45

Abstract

This Technical Report includes a causal-based modelling of software measurement processes
in order to clarify the real situations in the software metrics application field. A first overview
about existing semantic network approaches shows the problems and possible benefits using
these formal techniques in the software engineering area. The definition and extension of the
causal modelling using causal networks helps to understand the relationships between the
different measurement artefacts and their causalities. The description of first applications of
our approach demonstrates the empirical reasoning of the software improvement processes in
a holistic manner.

 1

1 Semantic Networks in Software Engineering

1.1 Semantic Networks

In a first approximation, we consider the semantic connections between the software metrics
based on the empirical characteristics in a lose manner. The method for visualisation should
be semantic networks. Semantic networks are symbolic-based methods of reasoning [Pearl
2000]. They are a kind of knowledge representation schemes involving nodes and links
between nodes. The nodes represent objects or concepts and the links represent relations
between nodes. A simple example of a semantic network considering the software
development involvements are given in the following figure based on [Laird 2006].

Figure 1: Semantic network of software development dependencies

1.2 Examples in Software Product and Process Descriptions

Typical kinds of links are ‘is-a’ or ‘has’. Another simple semantic network is given in Figure
2 and shows the relationships of a software project.

Figure 2: A simplified semantic network of a software project

A well-known example of a semantic network is given by [Furgeson 1998] without any
comments in the Figure 3 which includes the software process evaluation standards and
methods.

 2

Figure 3: Dependencies of software evaluation methods and standards

This network allows us to consider the different parts and sources of the well-known software
process evaluation standards and techniques. In order to use the semantic networks for the
representation of the empirical knowledge in software engineering, we will consider an
empirical interpretation of the network in Figure 2, described in Figure 4.

Figure 4: Example of a semantic network including empirical aspects

Addressing the basics of the project management, CMMI considers the following components
for the management of the IT processes [SEI 2002] (where QPM stands for Quantitative
Project Management, IPM for Integrated Project Management, IPPD for Integrated Product
and Process Development, RSKM for Risk Management, and ISM for Integrated Supplier
Management).

 3

Process Performance
objectives, baselines, models

QPM

Organization’s standard
processes and
supporting assets IPM

for
IPPD

RSKM
Lessons Learned,

Planning and
Performance Data

Project’s
defined
process

Statistical Mgmt Data

Risk status

Risk mitigation plans

Corrective action

Risk
taxonomies

& parameters
Process Management

process areas

Basic
Project Management

process areas

Risk exposure due to
unstable processes

Quantitative objectives
Subprocesses to
statistically manage

Identified risks

Engineering and Support
process areas

Coordination,
commitments,
issues to
resolve

IT

Coordination and collaboration
among project stakeholders

Shared vision
and integrated team
structure for the project

Integrated team
management for
performing
engineering
processes

Product
architecture
for
structuring
teams

Integrated work
environment and
people practices

Project’s
defined
processProject

performance
data

ISM

Monitoring data as
part of supplier
agreement

Configuration management,
verification, and integration
data

Figure 5: The CMMI project management process areas

Of course, this semantic network is helpful in addressing the management aspects which are
necessary for quality processes. But this description is mostly rough and implicit.

In [Dumke 2006c] we have shown a level-based approach in order to use software process-
related semantic networks for process description and explanation. We have been started with
a definition of software process modelling using a description from Wang and King [Wang
2000] as following: “Software process model (SPM) is a process of a model system that
describes process organisation, categorization, hierarchy, interrelationships, and
tailorability.” A complete presentation of these aspects which we must consider in the
management of software processes is shown in following simplified chart.

Figure 6: A holistic presentation of the software process involvements

 4

Furthermore, the following definition by Wang and King [Wang 2000] is helpful as a kind of
improvement of our SPM. “The software process establishment (SPE) is a systematic
procedure to select and implement a process system by model tailoring, extension, and/or
adaptation techniques.” The general software process model (SPM) is qualifying to a
software process establishment (SPE) as a concrete IT adaptation. We use this consideration
in order to improve our SPM with more details. The next figure includes a refinement of the
general structure described in figure 6 and the derived process indicators and criteria [Dumke
2006c].

Figure 7: The SPE based process network

Note that our SPE refinement of the SPM based on the scientific investigation leads us to the
nodes of our semantic network approach only. But we could establish the following situation:

� The aspects of process evaluation do not involve the area of software (as COTS
or CASE), platforms and society aspects like cultural background and
marketplace.

� Simple process management criteria are not addressed to the product
documentations as is the typical situation in the agile development approaches.

Considering the improvement context of software processes, the following definition by
Wang and King [Wang 2000] is helpful again: “A process improvement model (PIM) is an
operational model that provides guidance for improving a process system’s capability by
changing, updating, or enhancing existing processes based on the findings provided in a
process assessment.” We will choose some laws and process principles and rules [Dumke
2006c] and derive the following simple kind of a process related semantic network.

 5

Figure 8: The PIM based process related semantic network

Analyzing this simple kind of process related semantic network, we can establish the
following:

� Based on the considered approaches in the literature, we can see a better
coverage of the involved software process related areas

� The derived semantic network is helpful for identifying quality improvements
principles and laws for process controlling

� Considering the roots of this semantic network gives a good orientation for the
essential process aspects that would lead to best process improvement and
management.

In order to qualify our process semantic network by quantitative experience, we consider an
empirical (based) process model. Therefore, the following definition by Wang and King
[Wang 2000] is helpful again: “An empirical process model (EPM) is a model that defines an
organized and benchmarked software process system and best practices captured and elicited
from the software industry.” As rules of thumb, experiments and case studies will chose some
typical kinds which include a lot of such experience [Dumke 2006c]. The following figure 9
shows the involvement of such empirical studies in our kind of semantic network.

Of course, our network presentation is very simple but suggests some of the following short
characteristics:

� The relationships between the network components are quantified and can
support the process management in this manner

� Using the kinds of semantic network applied before, we can identify some tasks
for improving the process relationships for higher software process control.

 6

Figure 9: An EMP based process related semantic network

Using metrics leads us to the highest level of process related semantic network because of
quantified relationships between different process involvements. We will start with a simple
definition again addressing to the process measurement as following: “Software process
measurement model (SPM) is a model that defines an organized and benchmarked software
process system and applies process metrics and measures with quantitative measurement
characteristics.” In order to derive a semantic network based on these characteristics we will
consider the experiences [Dumke 2006c]. We will choose only some of these process metrics
in the figure 10 in order to better see the principal structuring of process related involvements.

Figure 10: A SMP based process related semantic network

 7

This kind of semantic process related network helps us in the following manner:

� The semantic network shows the process components which are involved in the
quantitative process management.

� It is possible to find out the components which are necessary to measure in
order to apply the chosen process metrics

� Finally it is possible to estimate the level of quantitative management as a
fundamental basis of process management level.

In this section we considered the software process involvements in an explicit (shown)
manner by using different detailed semantic networks which should guarantee the following:

� In every level of measurement-based process management we can see the
missing parts or the parts of weak kinds of evaluation.

� The semantic relationships between the process related aspects should be
explained definitely and could be analyzed through their appropriateness in a
changing IT area.

1.3 The Approach of Fenton et al.

Fenton at al. creates an approach by using probabilistic networks in order to better explain the
software defect prediction [Fenton 2001]. The basic semantic network in this approach is the
following.

Figure 11: A defect relationship semantic network

 8

This resulting network takes account of a range of product and process factors from
throughout the lifecycle of a software module. A derived semantic network considering the
specification quality mainly was build in the following manner.

Figure 12: A quality relationship semantic network

Using special ordinal attributes for the different kind of relationships leads to a better
characterization and explanation of the specification qualities.

1.4 Semantic Hierarchies and Levels

Considering the detailed descriptions of the different levels of semantic network based
process description can be ad to a situation in order to build structures about these levels.
Such structures could be built as

� Network hierarchy as define of refinements and subparts of the different nodes or
edges of the created semantic network

� Network levels as summarize the different relationships constructed in the different
levels of process involvements based on improvements, rules of thumb and metrics.

Therefore, our derived figures of semantic process networks show different kinds of
management levels shown in the following figure [Dumke 2006c].

 9

Figure 13: The different process semantic network levels

This visualization suggests that process management should consider all levels of process
evaluation identified as software process establishment (SPE), principles, laws and rules by
process improvement models (PIM), experimentation or rules of thumb by empirical process
models (EPM) and process metrics by a software process measurement model (SPM)) in order
to cover the process areas as much as possible.

On the other hand, our investigations and considerations have also clarified the current
situation of process measurement using an appropriate method of structuring of (all) the
software process involvements.

 10

2 Causal Models and SE-based Causal Networks

2.1 Causal Model Definition by Pearl

We will start with a general description of causalities summarizing in a model view. A causal
model is a triple M = �U, V, F�, where [Pearl 2000]

� U is a set of background variables, (also called exogenous), that determined by
factors outside the model;

� V is a set {V1, V2,…, Vn} of variables, called endogenous, that are determined by
variables in the model – that is, variables in U � V; and

� F is a set of functions {f1, f2,…, fn} such that each fi is a mapping from (the
respective domains of) U � (V\Vi) to Vi and such that the entire set F forms a
mapping from U to V. In other words, each fi tells us the value Vi given the values of
all other variables in U � V, and the entire set F has a unique solution V(u).
Symbolically, the set of equations F can be represented by writing

vi = fi(pai, ui), i=1, . . ., n,
where pai is any realization of the unique minimal set of variables PAi in V\Vi
(connoting parents) sufficient for representing fi. Likewise, Ui � U stands for the
unique minimal set of variables in U sufficient for representing fi.

This causal model could be used in order to do the following considerations and further
derivations [Pearl 2000]:

� Submodel of M: A submodel Mx of M is the causal model Mx = �U, V, F� where Fx = {
fi : Vi � X } � {X = x }.

� Effect of Action: Considering X as a set of Variables in V of the causal model M and x
as a particular realization of X, then the effect of action do(X = x) on M is given y the
submodel Mx.

� Potential Response: The potential response of Y to action do(X=x), denoted Yx=(u), is
the solution for Y of the set of equations Fx where X, Y � V.

� Counterfactual: The counterfactual sentence “The value that Y would be obtained, had
X been x” is interpreted as denoting the potential response Yx=(u).

� Probabilistic Causal Model: A probabilistic causal model is a pair �M, P(u)� where M
is a causal model and P(u) is a probability function defined over the domain of U.

� Causal Diagram/Network: Causal network visualization could be based on a directed
acyclic graph (DAG) where the nodes are the considered aspects U and V and the
edges implements the causalities F.

The following figure 14 shows a simple example of a causal diagram or network for dynamic
process controlling [Pearl 2000].

 11

Figure 14: An example of a causal diagram for process controlling

We will use this formal background in order to define our causal process network approach
described in the section below.

2.2 Software Engineering Causalities

We will give some examples of causalities in software engineering (cited from [Davis 1995])
in following:

� General principles: “Productivity and quality are inseparable.” “Communicate with
the customers/users.” “Change during development is inevitable.” “Technique before
tools.” “Most cost estimates tend to be low.” “What applies to small systems does not
apply to large ones.” “A system that is used will be changed.”

� Software specification:”Prototypes reduce risk in selecting user interfaces.”
“Requirement deficiencies are the prime source of project failures.”

� Software design: “Design for change, maintenance, and errors.” “Hierarchical
structures reduce complexity.” “Architecture wins over technology.” “Software reuse
reduces cycle time and increases productivity and quality.”

� Software coding and testing: “Don’t test your own software.” “Don’t integrate before
unit testing.” “Instrument your software.” “Don’t errors personally.” “Online
debugging is more efficient than offline debugging.”

� Software measurement: “Measurements are always based on actually used models
rather than on desired ones.” “Empirical results are transferable only if abstracted and
packaged with context.” “Measurement requires both goals and models.”

� The following cause-and-effect diagram shows the classification of some aspects of
the software process [Florac 1999].

Another kind of causalities is described as software engineering laws. The following figure
shows the variety of intentions of such laws addressed to the different parts of software
development. The detailed content of these laws is described in [Endres 2003].

 12

Figure 15: Intentions of chosen software engineering laws

2.3 Causal Networks in Software Engineering

Causal networks as a special kind of semantic networks are very expressive in order to see or
analyze the relationships between process activities, areas and indicators in a logical manner.
Typical results of such a modelling are ([Fenton 2001], [Pearl 2000])

� The consequence of process activities to other ones involving different quality
characteristics like correctness, completeness etc.

� The repercussion of the chosen approaches for process evaluation and improvement

� The overview about strong and weak process connections in order to keep quality
improvements

� The application of (causal) model-based principles in order to reduce the process
complexity and involvements.

In a general manner a causal network “is a directed acyclic graph arising from an evolution of
a substitution system, and representing its history” [Weisstein 2006]. The process evolution
involves causal relationships between events, states, entities, objects, artefacts etc. which
could be based on a special kind of empirical reasoning. In following we will consider special
kinds of causal networks in process analysis, measurement, and evaluation. We discuss the
following level of causal process networks including the kinds of causalities [Dumke 2006a]

(D) “has an influence to” (e. g. failure propagation)

(I) “involve an improvement of” (e. g. based on maturity models)

(Q) “keep the quality of” (e. g. quality reasoning for connected components).

 13

Note other causalities exists between process components like “leads to failures in”,
“decrease the”, “has a feedback to”, “has side effects from”, “involves the ripple effect to”
etc. which are not considered in this paper. As helpful form of presentation we use the general
schema of figure 6 (see above) of software process involvements derived from [Dumke
2006c] (see also Deek 2005], [Kenett 1999] and [Wang 2000]). These process-related areas
are the context of our causal process network consideration and investigation explicitly.

Causal Process Networks of Dependencies: The dependencies in software processes could
be related to anyone and anything. We will start with a first simple example considering the
five core metrics of Putnam [Putnam 2003]. The definition of the relationships between these
metrics leads us to the following simple causal process network of dependencies.

Figure 16: Causal process network of the Five Core Metrics of Putnam and Myers

Another kind of causality as an impact trace is defined in [Emmerich 2007] which considers
the different relationships between any approaches, publications, standards and technologies.
The following figure shows an example of this kind of causal network.

Figure 17: Impact trace of the definition of SOAP

 14

The network of individual cause-effect relationships (so-called base mehanism) of the system
dynamics in a generic process from Müller and Pfahl is given in following [Müller 2008].

Figure 18: Base mechanism as causal network

Using our general process involvements schema, the dependencies will be defined on the
basis of [Dumke 2005a], [Dumke 2005b], [Emam 1998], [Garcia 2005], [Haywood 1998],
[Lecky-Thompson 2005], [Putnam 2003], [Richter 2005], [Royce 1998], [Wang 2000], and
[Zettel 2001]. Adapting this experience can refine the different process aspects shown in the
figure 19. We have chosen a rough description and only few of the (causal) relationships in
order to keep the clearness of the principles and intentions. The causal process network of
dependencies shows

(D1) The existing relationships which are necessary to consider in the different kinds of
process aspects managing the changing, migration, upgrading, and evolution

(D2) The different kinds of relationships like “determines”, “requires”, “motivates”,
“forms”, “administrates”, “performs” etc. which lead to different kinds causal
analysis and causal chain reasoning

(D3) The general network characteristics like direction of the nodes, singularities, and
component/chain areas of software process involvements.

Note the shown background of the software process involvements keeps a holistic view of the
process dependencies which can be lead o higher level causalities discuss in the following
sections.

 15

Figure 19: Causal process network of dependencies

Causal Process Networks of Improvements: In the next level of causalities in process
related networks we will consider the characteristic of improving. We will start again with a
very simple causal process network of improvements example. The Software Process
Improvement and Capability dEtermination (SPICE) is defined as an ISO/IEC standard TR
15504 [Emam 1998]. The principles of the process assessment of SPICE are given in the
following semantic network [SPICE 2006] achieving the improvement criteria.

Figure 20: Causal process network of the SPICE approach

Based on the idea of process improvement, a lot of maturity models (MM) were defined and
implemented in order to classify different aspects of software products, processes and

 16

resources. Some of these maturity evaluation approaches are described in the following table.
Their detailed description is given and/or referenced in [April 2005] and [Braungarten 2005].

Table 1: Chosen maturity models

Model Description Model Description
PEMM Performance

Engineering MM
CM3 Configuration

Management MM
TMM Testing Maturity

Model
ACMM IT Architecture

Capability MM
ITS-CMM IT Service

Capability MM
OMMM Outsourcing

Management MM
iCMM Integrated CMM PM2 Project Management

Process Model
TCMM Trusted CMM IMM Internet MM
SSE-CMM System Security

Engineering CMM
IMM Information MM

OPM3 Organizational
Project

Management MM

PMMM Program Management
MM

OMM Operations MM PMMM Project Management
MM

M-CMM Measurement MM IPMM Information Process
MM

SAMM Self-Assessment
MM

CPMM Change Proficiency
MM

UMM Usability MM ASTMM Automated Software
Testing MM

ECM2 E-Learning CMM LM3 Learning Management
MM

WSMM Web Services MM ISM3 Information Security
Management MM

eGMM e-Government MM TMM Team MM
EVM3 Earned Value

Management MM
SRE-MM Software Reliability

Engineering MM
WMM Website MM EDMMM Enterprise Data

Management MM
DMMM Data Management

MM
S3MM Software Maintenance

MM

In order to derive a causal process network of improvements keeping all the process
involvements, we will consider the some of the MM’s above that lead us to the following
figure.

 17

Figure 21: Causal process network of improvements

The bold arrows visualize the maturity-based improvement characteristics. The causal process
network of improvements shows

(I1) The sources and goals of the different improvement models, methods and
technologies which could be described in the context of the organizational level

(I2) The components which are not under any activities of (quality) improvements; they
could be identified and are the basis for strategic evolvements

(I3) The possibility of adding some attributes which shows the current step of maturity
or (quality) level achievements.

Furthermore, improvement activities could also be some techniques or technologies like
structured programming, information hiding, coupling reduction, and aspect concerning
which we don’t haven consider in this paper.

Causal Process Networks of Quality Assurance: Finally, we will discuss the causal process
network modelling considering the quality assurance aspects. We start again with a simple
kind of causal process network of quality assurance based on the Personal Software Process
(PSP) in the following figure 22 [Humphrey 2000].

 18

Figure 22: Causal process network considering PSP

In order to show general quality assurance connections we will select quality approaches like
Six Sigma (6�) and ITIL (described in [Dumke 2006b]) and some of quality principles
summarized in [Keyes 2003] as

� Redmill’s quality principles in the management of software-based development
projects (RP)

� Corbin’s methodology for establishing a software development environment (CM)

� Shetty’s seven principles of quality leaders (SP)

� Zachmann’s quality framework of development complex systems (ZP)

� Kemayel’s controllable factors in programmer productivity (KF)

Therefore, we obtain one of the following versions of charts where the kind of quality
assurance is given after the Q mark.

The causal process network of quality assurance shows

(Q1) The kinds of involved quality assurance methods and approaches in the current
process analysis and reasoning

(Q2) The process involvements including under quality assessment and control in a
given context of IT areas

(Q3) The possibilities of network analysis, evaluation, and transformation keeping
intended quality levels.

 19

Figure 23: Causal process network of quality assurance

Some essential results and open problems could be identified as basics for future
investigations in process measurement and evaluation. The causal network as a special kind of
semantic networks is helpful in order to discuss the causal analysis and reasoning in a non
formal manner of essential aspects in order to keep some of the requirements of the CMMI
level five.

2.4 Reasoning in SE Causal Networks

The following approach was defined in [Dumke 2001] and is addressed to the possibilities of
reasoning in semantic/causal networks. This leads us to the necessity to define the new/special
contents of the semantic of the nodes and their links in a semantic network. Hence, we define
the following kinds of nodes and links:

� A software measure or metric should be presented as an object/concept. The empirical
evaluation of this metric are divided in the kinds of quantitative evaluation as
measured, estimated, predicted or delivered (from measured) and in the kinds of
qualitative evaluation as nomination and classification. On the other hand, the
evaluations can be based on measured attributes only, can include the measurement
unit or can be based on attribute evaluation only. Therefore, we will define the
following notations as different nodes they are described in Figure 24.

 20

Figure 24: Nodes in the semantic network for describing the empirical criteria

� The links between the nodes are the assumed or proved semantic (empirical)
relationships between the metrics. The symbols of these links are given in the Figure
25.

Figure 25: Kinds of links between empirical evaluated software metrics

As an example for using the symbolization above, we will give a simple metrics-based
semantic network in Figure 26. This network includes two empirical-based measured
components and assumed relations to other evaluated and considered aspects. We have
assigned the customer as resource because of the role of the customer in the product
application.

� The causal network can be interpreted to obtain a set of empirical criteria for software
metrics applications. Valid interpretations include

� Analysis: The semantic network can be analysed using the well-known graph
interpretations such as connectivity, predecessors and successors, and singularity.
Considering the graph in Figure 6, we obtain some of the analysis results as

- Connections: the CMM level influences the kind of process, the product
functionality and the customer satisfaction in the described manner,

 21

- Singularity: the high quality of code relating to the code readability has no
advantages in order to keep some other software development
characteristics.

Figure 26: An example of a metrics-based semantic (causal) network

� Evaluation: The source of the evaluation of the semantic network should be the
empirical characteristics and should allow define the empirical level of the
measurement process relating to the different kinds of nodes and links. These
characteristics are only related to the static aspects of the software measurement
process both internal and external form of the process.

Some of the special types of evaluations of the semantic network are the
following:

- the number of the components with a higher measurement level relating to the
components with a lower measurement level for potential reduction of the
semantic network,

- the percentage distribution of the different nodes in the network in order to
characterise the different parts of the measurement levels,

- the number of the different kinds of arrows in the network which determine
the possibility of the transformation of the empirical characteristics between
the different components (nodes).

� Reduction: The interpretation of our semantic network includes also a kind of an
operation. We define the following rules for transformation in Table 2.

 22

 Table 2: Rules of nodes transformation in the semantic network

In the network of Figure 26, we can use the empirical-based aspect of the CMM
level measurement to apply the defined transformations rules. The result of this
reduction is given in Figure 27.

Figure 27: The use of transformations in the metrics-based semantic network

Note that we have ‘consumed’ the arrows between the components through the
application of the transformation rules. On the other hand, the interpretation of the
metrics-based empirical network must consider whether of nodes constitute a
continuous measurement or a periodic assessment. This leads to a time-depended
kind of these networks. In this manner, we obtain a reduced network from Figure

 23

27 which is valid until the next CMM evaluation/certification is necessary. This
temporary valid network is shown in Figure 28.

Figure 28: The reduction of the metrics-based semantic network

The semantic network for presenting the empirical characteristics in the software
measurement is an appropriate tool for general description of the measurement process
explicitly. We will give some examples in this paper below. This step includes the
instrumentation or the automation of the measurement process by tools. It requires analyse
the algorithmic character of the software metrics and the possibility of the integration of tool-
based ‘control cycles’ in the software development or maintenance process.

We will call the metrics tools as CAME (Computer Assisted software Measurement and
Evaluation) tools [Dumke 1996]. In most cases, it is necessary to combine different metrics
tools and techniques related to the measurement phases.

Techniques for the tool-based software measurement are the consideration of attributing,
extension, composing and are addressed to the presentation model (as language, as
parameterised component or verbal description). Therefore, we extend the symbolisation of
the metrics or measures characterisation in the manner of Figure 29.

Figure 29: Tool-support characterisation of the empirical metrics description

 24

Based on a special assumption, we can obtain a tool support related to our example described
in Figure 28 in the kind of Figure 30.

Figure 30: Tool-support example of software measurement

Therefore, we consider a method in order to improve the process level based on the semantic
network of the empirical characteristics. The general steps of this method are the following:

Software process improvement

� building of the semantic (causal) network based on the
empirical evaluation of all of the chosen metrics,

� characterising of the semantic network by analysing and
evaluation in order to prepare the empirical-based semantic
network for the following step of network reduction,

� application of the reduction rules of the semantic network in
order to obtain a conditioned empirical description of the
software measurement process.

The empirical characteristics of an ISO 9126 evaluation are shown in Figure 31. This causal
network also shows that reductions are possible under specific conditions only.

 25

Figure 31: Empirical network based on the ISO 9126 standard

The high level of some quality aspects is based on the general characteristics of the CMM
level four as “quantitative project management”. Note, that the determination of the CMM
level itself is based on an evaluation founding on questionnaires. The intention was to have a
measurement process, which covers not only all the process aspects. They should also
includes the product measurement and the resource evaluation. The special kind of CMM
leads to influences in product and resource measurement. Hence, we can establish the
situation which is shown in Figure 32.

Figure 32: Simplified empirical network based on the CMMI

 26

The connections between the empirical nodes in Figure 32 also do not allow application some
of our reduction rules. On the other hand, the background of all the used metrics leads to
investigations of the personal process aspects in order to observe improvement during the
software development and maintenance in Figure 33.

Figure 33: Empirical network based on the PSP approach

Note that the chosen examples are very simple in order to demonstrate the principles and
possible applications of this kind of visualization and exploration.

3 Causal Network-Based Process Model (CNPM)

3.1 The Software Process Modelling
In order to define process cautions and their analysis for process improvement we must decide
the kind of process description and visualization. A first simple kind of software process
description can be used by the declarative model [Dumke 2006b]

 27

Figure 34: Declarative (general) software process description

Another kind of process description considers the different process components such as
activities process structures etc. The following figure shows an example written in the
Business Process Modelling Notation (BPMN) [Dumke 2006b].

Figure 35: Software process description in the BPMN

 28

Furthermore there are a lot of models and notations of process descriptions [Dumke 2006b].
But we will use the component model shown in 1.2 in order to address the essential software
process aspects and involvements [Dumke 2006a].

Figure 36: Software process component model

Formally the software process could be simply described based on this component model as
following

� the software process is based on (product) requirements in order to create a software
product

� requirements can be divided into functional and non-functional product requirements

� the product consists of programs and documentations

� the software process involves the methodology, the lifecycle and the management
aspects

� the software process is based on the different resources as personnel, software (COTS
and CASE) and platforms (hardware and system/basic software)

� the software process and the software product are involved in the application domain
that consists of the society, organization and the IT area

On the other hand this component model can be mapped with the deterministic causal model
approach of Pearl [Pearl 2000] in the following manner (see 2.1)

� the background (exogenous) variables U are

U = {u , u , u (ITrea) , u (functiona , u (non ,)(society
nDomainapplicatio

)(society
nDomainapplicatio nDomainapplicatio

l)
tsrequiremen

)functional
tsrequiremen

	

 u (programs)
product , u , u , u , u , u }tions)(documenta

product
)(personnel

resources
(COTS)
resources

(CASE)
resources

(platform)
resources

 29

� the endogenous variable V are

V = {v (methdolog , v , v (managemen }y)
process

)(lifecycle
process

t)
process

 that can be detailed in more (sub) components and elements

� the cautions F={f1, f2,…, fn} between the U und the V could be built as following
examples

v (managemen = f1 (v (methodolo , u (CASE))t)
process

gy)
process resources

v (lifecycle = f2 (v (methodolo , u (ITarea)))
process

gy)
process nDomainapplicatio

v (methodolo = f3 ([v (lifecycle , v], u)gy)
process

)
process

t)(managemen
process

(programs)
product

 etc.

Note that we have introduced a very rough description at first in order to demonstrate the
causal model/network in principle. The following figure shows a simplified characterization
of this kind of causality description.

Figure 37: Causal model areas in the software process components

Note that there are possible other forms/boundaries of the considered causal model depending
on the definition of U and V. Some other examples are show in the following figure.

Figure 38: Variants of causal model areas

These kinds of causal network based descriptions could be considered as different parts of
empirical software engineering causal worlds.

 30

3.2 The CNPM Approach
The causal network based process model (CNPM) concept is defined in the following parts
and components of this approach:

(M1) The causal network model MCNPM is based on the following software process
ingredients and involvements:

MCNPM = �UCNPM, VCNPM, FCNPM � ,
where

� UCNPM is a set of background variables that is determined by objects o CNPM
iu, (i

 {1,2,…,m}) as software process artefacts outside the considered model

� VCNPM is a set {V CNPM
1 , V CNPM

2 ,…, V CNPM
n } of variables that are determined by

objects o CNPM
iv, (i
 {1,2,…,n}) in the model – that is, variables or objects in

UCNPM � VCNPM; and

� FCNPM is a set of functions {f CNPM
1 , f CNPM

2 ,…, f CNPM
n } such that each f CNPM

i (i

 {1,2,…,n}) is a mapping from (the respective domains of) UCNPM �
(VCNPM\V CNPM

i) to V CNPM
i and such that the entire set FCNPM forms a mapping

from UCNPM to VCNPM. In other words, each f CNPM
i tells us the value V

given the values of all other variables in UCNPM � VCNPM, and the entire set
FCNPM has a unique solution VCNPM (o). Symbolically, the set of equations
FCNPM can be represented by writing

CNPM
i

o CNPM = f (r CNPM
i , o CNPM , o CNPM), i,j =1, . . ., n, i� j iv,

CNPM
i jv, ju,

where r CNPM
i is any realization of the unique minimal set of variables as roles1

R CNPM
i in VCNPM\V sufficient for representing f .CNPM

i
CNPM
i

The following figure shows two examples of a simple CNPM model in different
kinds of representation2 in following.

Figure 39: Simple examples of CNPM models

1 Against the causality in natural science, software processes are based on activities of subjects. Therefore, we
use a description of subjects as roles. Note that the roles define the causal heuristics addressed to the
considered/presented function in the set of the software process artefacts.
2 Note that the first kind of CNPM presentation is based on the typical cause-effect description. But we will use
the second kind of presentation for our CNPM model visualization.

 31

Considering the introduced levels of causality as dependencies, improvements and
quality-based in the section 2.3 we can establish

f = {D � I � Q }CNPM
i

 = {“determines”, “requires”, … , “TMM”, “OMM”, … , “ZP”, “KF”}

(M2) The MCNPM can be modified in the following manner considering the typical causal
relationships between software process artefacts:

� Union or summarizing of CNPM models: this kind of modification exists in
different variants based on the given situation between the considered CNPM
models such as equivalent functions or equivalent (set of) roles, equivalent
inputs or outputs. We will describe a simple example for CNPM model
unification based on the equality of functions. The union of two CNPM models
could be described in f CNPM

funcjoin as following

f : M � M CNPM � M CNPMCNPM
funcjoin

CNPM
x y xy

where the models M und M are defined by CNPM
x

CNPM
y

M CNPM = < U CNPM , V , F >x x
CNPM
x

CNPM
x

with the function f
 F , the outputs V and the inputs U
and

CNPM
i

CNPM
x

CNPM
x

CNPM
x

M CNPM = < U , V , F CNPM >y
CNPM
y

CNPM
y y

with the function f
 F , the outputs V and the inputs U .

The function f represents the common function in both CNPM models
with the following characteristics

CNPM
i

CNPM
y

CNPM
y

CNPM
y

CNPM
i

M CNPM : f : U � V \V CNPM
i � V CNPM

ix
CNPM
i

CNPM
x

CNPM
x

where V CNPM
i
 V CNPM

x

M CNPM : f : U � V \V � Vy
CNPM
i

CNPM
y

CNPM
y

CNPM
j

CNPM
j

where V CNPM
 Vj
CNPM
y

Hence, the derived CNPM model M CNPM has the following characteristics: xy

M CNPM = < U CNPM , V ,F >xy xy
CNPM
xy

CNPM
xy

with the function f
 F CNPM , the inputs V CNPM = V � V CNPM and

U = U � U and

CNPM
i

CNPM
y

xy xy
CNPM
x y

CNPM
xy

CNPM
x

f : U � V \V CNPM � V CNPMCNPM
i

CNPM
xy

CNPM
xy k k

 32

with U = U CNPM � U CNPM , V = V � V CNPM , V =

V CNPM
i � V .

CNPM
xy

j

x y
CNPM
xy

CNPM
x y

CNPM
k

CNPM

The following figure shows a simple example of the application of the function
f CNPM using the both diagrams in figure 39. funcjoin

Figure 40: Simple example for f application CNPM
funcjoin

� Partitioning of a CNPM model consists of building sub models and special parts
of models. The partitioning function f CNPM

part builds new CNPM models using the
existing elements or components and could be characterized as

f : M CNPM � M � M CNPM
part xy

CNPM
x

CNPM
y

That means that the CNPM model M = <U CNPM , V CNPM , F > with the

inputs U CNPM , the outputs V and the causal functions F � F CNPM :

U CNPM � V CNPM \V � V would be divided in the two sub models

M = <U CNPM , V CNPM , F > with the function F � F CNPM , the

outputs V CNPM � V CNPM , the inputs U � U and F CNPM
i � F CNPM :

U CNPM � V CNPM \V � V CNPM
i and M CNPM = <U , V , F > with

the function F CNPM � F , the outputs V � V CNPM , the inputs U �

U CNPM and F � F : U � V CNPM \V � V . In practice it

would be helpful to ensure that the sets of causal functions F and F are
disjunctive. We will show a simple example again in the following figure which
used the CNPM model from figure 40 in order to build any two sub models.

CNPM
xy

x

y

xy

xy

y

CNPM
j

xy

x

y

j
CNPM
x

CNPM
xy

CNPM

y

xy

xy

x

x

x

j

CNPM
xy

CNPM
k

CNPM
x

CNPM
y

k

CNPM

CNPM

xy

x

CNPM
y

CNPM

xy
CNPM
x

x

xy

CNPM
k

x

xy
CNPM
i

xy

y

CNPM
xy

CNPM

y

CNPM

CNPM
y

y

CNPM

CNPM

xyy
CNPM

CNPM

CNPM

 33

Figure 41: Simple example for f application CNPM
part

� Restructuring of a CNPM model is reasonable in different practical situations.
Formally, it could be an extension or reduction of the different sets of UCNPM,
VCNPM and FCNPM. That means an addition or extraction of any objects o CNPM

iu, or
o CNPM

iv, , roles r CNPM
i or functions f CNPM

i . Semantically, it is based on changing the
functional background as a change of the causality. In following we will consider
some special cases of restructuring using the CNPM model description M CNPM

x =
< U CNPM

x , V CNPM
x , F CNPM

x > with the inputs U CNPM
x , the outputs V CNPM

x and the
causal functions F CNPM

x .

(1) Addition/extraction of a function: In principle, the addition or extraction of a
causal function could be characterized as a summarizing or partitioning of two
causal models. This is reason for the key aspect of the function as kernel of the
CNPM models.

(2) Addition/extraction of a role: The role as a causal indicator extends the
causality characteristic of any function in the CNPM model. The addition or
extraction of a role extends or reduces the input set U CNPM and would be
explained also in the next section.

x

(3) Addition/extraction of an input: Considering the characterized CNPM model
M above, a new model was built M CNPM in the following manner: in the case
of addition the derived model M = <U CNPM , V , F > includes the
outputs V , the modified inputs U CNPM and the functions F � F CNPM :
U CNPM � V \V CNPM

i � V CNPM
i where U = U � {u }. In the

case of extraction we establish U CNPM � V \V CNPM
i � V where

U CNPM = U CNPM \ {u }. Note that in both cases the set of functions F CNPM
i is

addressed to u CNPM
i only. The other functions in F would be not changed

using this kind of restructuring.

CNPM
x

x'

x'

x'

x'

x'

CNPM
x'

x'

CNPM
x

CNPM
x

CNPM
x

CNPM
x

i'

i

CNPM
x

CNPM
x

x

CNPM

CNPM

CNPM
i

x
CNPM
x'

CNPM
x

CNPM
i '

 34

(4) Addition/extraction of an output: These kinds of operations of restructuring
could be described in the same manner like (3) considering the output set V
modified to V . We obtain M = <U , V , F CNPM > includes the
inputs U , the modified outputs V and the functions F : U �

V \V � V where V = V � {v CNPM
i } and V �

V and in the case of extraction V CNPM = V CNPM \ {v }.

CNPM
x

CNPM

CNPM
'

CNPM
x'

CNPM
x'

x

x'

x'

CNPM
x

CNPM
x

x

CNPM
x'

CNPM
i

x
CNPM
x

CNPM
x
CNPM
i'

CNPM
'

CNPM
x

x
CNPM
x'
CNPM
x

CNPM
i'

A simple example of restructuring based on the CNPM model from figure 40 by
addition of a role and extraction of an object for function 2 is given in the
following figure.

Figure 42: Simple example for restructuring of a CNPM model

(M3) The MCNPM can be analyzed considering the typical causal relationships between
software process artefacts in the following manner. The CNPM model could be
considered as a directed graph where every node has some predecessors and any
successors. Hence, it is possible to analyze or count these elements for a first level
of CNPM analysis and evaluation. For instance, we obtain the number of all roles in
the CNPM, the number of derived objects etc. Based on this idea, we can define the
following function f of CNPM analysis as CNPM

inputextract _

f : M � f � U CNPM
i

CNPM
inputextract _

CNPM
x

CNPM
i

where M = <U CNPM , V CNPM , F > , f
 F , U CNPM
i � U

and

CNPM
x x x

CNPM
x

CNPM
i

CNPM
x

CNPM
x

U = { u CNPM
i : u = predecessor(f)}.CNPM

i
CNPM
i

CNPM
i

Extracting the roles r could be based on the counting of their causal aspects
because of their actor characteristic. That could be expressed by

CNPM
i

U = { u : u CNPM
i = predecessor(f)
 actor(u CNPM

i) = “yes”}. CNPM
i

CNPM
i

CNPM
i

In the same manner we could analyze the expected results and outputs based on the
function f as following: CNPM

outputextract _

 35

f : M � f � V CNPM
outputextract _

CNPM
x

CNPM
i

CNPM
i

where M CNPM = <U CNPM , V , F >, f
 F , U � U
and

x x
CNPM
x

CNPM
x

CNPM
i

CNPM
x

CNPM
i

CNPM
x

V = { v CNPM
i : v = successor(f CNPM

i)}.CNPM
i

CNPM
i

Applying these functions to our described examples of CNPM models we can
derive the following characteristics:

� predecessor(f CNPM_M2
1) = {‘Role 1’, ‘Object 2’}

� predecessor(f CNPM_M3
1) = {‘Role 1’, ‘Object 1’}

� successor(f CNPM_M3
2) = {‘Object 3’}

(M4) The MCNPM can be evaluated in the following manner considering the typical causal
relationships between software process artefacts. The CNPM model could be
characterized as empirical evaluation that requires the identification of the
empirical aspects explicitly. Such empirical characteristic for objects could be
process artefact level, artefact quality or process artefact performance. From this
point of view, the CNPM model evaluation could be performed as following:

� causal coverage analysis of the fulfilled requirements from a special
software process point of view,

� causal trace analysis of the successful consideration of process flow based
requirements,

� causal achievement analysis of the derived results and outputs in different
parts on the CNPM model.

In order to explain some of these kinds of analysis we will consider the CPNM
model M CNPM describing the empirical-based process aspects mainly and the
CPNM model M describing the causal basics in general. On that we
characterize a simple causal coverage analysis as

x
CNPM
y

 coverage = �(|F |+|U |+|V |)/ �(|F |+|U |+|V |)CNPM
My

CNPM
y

CNPM
y

CNPM
y

CNPM
x

CNPM
x

CNPM
x

where F � F CNPM , U � U , V CNPM � V CNPM . Therefore we can
establish that the best value of causal coverage would be achieved as
coverage =1. On the other hand, percentage-based kind of presentation would
be obtained by

CNPM
x

CNPM
My

y
CNPM
x

CNPM
y x y

coverage[%] = coverage * 100 . CNPM
My

Considering the different variables or objects and roles we can define

 36

coverage CNPM = � |F CNPM | / � |F CNPM |Myfunction _ y x

coverage CNPM = � |U | / � |U |Myinput _
CNPM
y

CNPM
x

coverage CNPM = � |V CNPM | / � |V CNPM |Myoutput _ y x

Furthermore, in the case of coverage lower 1 we have the situation of any missing
objects. That could be characterized in the following manner

F = { F CNPM \ F : F � F }CNPM
nctionmissing_fu x

CNPM
y

CNPM
y

CNPM
x

F = { U \ U : U � U }CNPM
putmissing_in

CNPM
x

CNPM
y

CNPM
y

CNPM
x

F = { V CNPM \ V : V � V }CNPM
tputmissing_ou x

CNPM
y

CNPM
y

CNPM
x

For the causal trace analysis and achievement analysis the existing graph algorithm
and methods of evaluation can be used that would not be considered here.

3.3 CNPM-Based Software Process Analysis

One of the possible uses for the CNPM model is the mapping of process standards. This shall
be described by example of the key process area „Organizational Training“ (OT) of the
CMMI. Also it will be considered that specific practices of this model give a hint for the
implementation of a CMMI conformant process environment. The specific practice (SP) 1.1
will be used as an example for the implementation of a CNPM network.

SP 1.1 – Establish the Strategic Training Needs
This practice contains the following sub practices:

� Analyze the organization’s strategic business objectives and process improvement
plan to identify potential future training needs.

� Document the strategic training needs of the organization.

� Determine the roles and skills needed to perform the organization’s set of standard
processes.

� Document the training needed to perform the roles in the organization’s set of
standard processes.

� Document the training needed to maintain the safe, secure and continued operation of
the business.

� Revise the organization’s strategic needs and required training as necessary.

To create a network it is necessary to split the text into tasks, objects and roles. This
decomposition leads to the following elements:

 37

Objects:

� Strategic business objectives

� Process improvement plan

� Set of standard processes

� Training needs for roles and skills

� Training needs for business

� Needed roles

� Needed skills
Functions:

� Analyse

� Document strategic training needs

� Determine roles and skills

� Document training needs to perform standard processes

� Document training needs for safe, secure, continued business

� Revise if necessary
Roles:

The text of the CMMI contains no detailed information about the role executing the
task. But it gives the general definition, that the management is responsible for all
quality activities. So for the following networks the management will be used as
executing instance of this task.

The resulting network is shown below:

Figure 43: Organizational Training - SP 1.1 – first approach

 38

A deeper analysis of the objects contained in this network shows, that there is no Task,
creating the objects „training needs for roles and skills“ and „training needs for business“.
This shows the incompleteness of the CMMI in some detailed views.

The inserted processes are the following:

� Determine training needs for roles and skills

� Determine training needs for business

Furthermore, it can be seen, that the network contains two functions for documenting two
different types of training needs. Giving credit to the fact that the documentation of training
needs doesn’t depend on the type of the training need that is to be documented, both functions
can be combined to a single one.

� Document training needs

The network constructed by these changes is shown in the following figure:

Figure 44: Organizational Training - SP 1.1 - restructured

To create the other specific practices some adaptations of the CMMI-text are necessary. For
example, the fact, that the object “Satisfaction approaches” of OT-SP 1.4 is not used as an
input object for any of the other contained sub processes. Furthermore it isn’t a work product
of the process area, what makes it necessary to insert the impact of this object in later
functions.

Abstaining from showing the detailed description of the creation of the diagrams the
following figures show the text and the final networks of the specific practices 1.2 to 2.3.

 39

SP 1.2 - Determine which training needs are the responsibilities of the Organization

� Analyze the training needs identified by the various projects and support groups.

� Negotiate with the various projects and support groups on how their specific training
needs will be satisfied.

� Document the commitments for providing training support to the projects and support
groups.

Figure 45: Organizational Training - SP 1.2

SP 1.3 – Establish an organizational training tactical plan

� Establish plan content

� Establish commitments to the plan

Figure 46: Organizational Training - SP 1.3

 40

SP 1.4 - Establish training capability

� Select the appropriate approaches to satisfy specific organizational training needs.

� Determine whether to develop training materials internally or acquire them externally

� Develop or obtain training materials

� Develop or obtain qualified instructors

� Describe the training in the organization’s training curriculum

� Revise the training materials and supporting artifacts as necessary

Figure 47: Organizational Training - SP 1.4

SP 2.1 – Deliver training

� Select the people who will receive the training necessary to perform their roles
effectively.

� Schedule the training, including any resources, as necessary (e.g., facilities and
instructors)

� Conduct the training

� Track the delivery of training against the plan

 41

Fuigure 48: Organizational Training - SP 2.1

SP 2.2 – Establish training records

� Keep records of all students who successfully complete each training course or other
approved training activity as well as those who are unsuccessful

� Keep records of all staff who have been waived from specific training

� Keep records of all students who successfully complete their designated required
training

� Make training records available to the appropriate people for consideration in
assignments

Figure 49: Organizational Training - SP 2.2

 42

SP 2.3 – Assess training effectiveness

� Assess in-progress or completed projects to determine whether staff knowledge is
adequate for performing project tasks

� Provide a mechanism for assessing the effectiveness of each training course with
respect to established organizational, project or individual learning (or performance)
objectives

� Obtain student evaluations of how well training activities met their needs

Figure 50: Organizational Training - SP 2.3

Using the methods described above, the shown networks can be combined to show the
complete picture of the tasks fulfilling the requirements of key process area “organizational
training”.

The combination is executed by a mapping over the role “management” and some output
objects, being input objects in other CNPM networks. The following figure shows the overall
process network of this process area.

 43

Figure 51: Organizational Training - complete network

 44

4 Conclusion and Future Work

The presented CNPM-based approach was applied in practice in order to transform the textual
CMMI standard in a causal network based form. This implies the chance of explicit
description of the CMMI process evaluation from an implicit one. Otherwise it allows to
consider other causalities and empirical relationships in the software process area depending
on concrete industrial situations and methodologies.

In our further research different process evaluation approaches would be compared in order to
understand, classify and improve the software process management level in the IT practice.
The concrete application of our CNPM approach in practice was described in a separate PhD
thesis in our software engineering group.

5 References
[April 2005] April, A.: S3m-Model to Evaluate and Improve the Quality of Software Maintenance Process.

Shaker Publ., Aachen, Germany 2005

[Braungarten 2005] Braungarten, R.; Kunz, M.; Dumke, R.: An Approach to Classify Software Measurement
Storage Facilities. Preprint No 2, University of Magdeburg, Dept. of Computer Science, 2005

[Davis 1995] Davis, A. M.: 201 Principles of Software Development. McGraw Hill Publ., 1995

[Deek 2005] Deek, F. P.; McHugh, J. A. M.; Eljabiri, O. M.: Strategic Software Engineering – An
Interdisciplinary Approach. Auerbach Publications, Boca Raton London New York,2005

[Dumke 1996] Dumke, R.; Foltin, E.; Koeppe, R.; Winkler, A.: Softwarequalität durch Meßtools – Assessment,
Messung und instrumentierte ISO 9000. Vieweg Publ., Braunschweig, Germany, 1996

[Dumke 2006a] Dumke, R.; R.; Blazey, M.; Hegewald, H.; Reitz, D.; Richter, K.: Causalities in Software
Process Measurement and Improvement. Proc. of the MENSURA 2006, Nov. 6-8, 2006, Cardiz, Spain,
pp.42-52

[Dumke 2006b] Dumke, R.; Braungarten, R.; Blazey, M.; Hegewald, H.; Reitz, D.; Richter, K.: Software
Process Measurement and Control – A Measurement-Based Point of View of Software Processes.
Preprint No 11, University of Magdeburg, 2006 (http://ivs.cs.uni-magdeburg.de/sw-
eng/agruppe/froschung/Preprints. shtml)

[Dumke 2006c] Dumke, R.; Braungarten, R.; Blazey, M.; Hegewald, H.; Reitz, D.; Richter, K.: Structuring
Software Process Metrics - A holistic semantic network based overview. Proc. of the IWSM 2006,
Potsdam, Nov. 2006, pp. 483-498

[Dumke 2001] Dumke, R.; Lother, M.; Abran, A.: An Approach for Integrated Software Measurement Processes
in the IT Area. Proc. of the FESMA 2001, Heidelberg, My 2001, pp. 15-29

[Dumke 2005a] Dumke, R.; Richter, K.; Fetcke, T.: FSM influences and Requirements in CMMI-Based Software
Processes. In: A. Abran et al.: Innovations in Software Measurement, Shaker Verlag, Aachen, pp. 179-
194

[Dumke 2005b] Dumke, R.; Schmietendorf, A.; Zuse, H.: Formal Descriptions of Software Measurement and
Evaluation - A Short Overview and Evaluation. Preprint No. 4, Fakultät für Informatik, University of
Magdeburg, 2005

[Emam 1998] Emam, K. E.; Drouin, J. N.; Melo, W.: SPICE – The Theory and Practice of Software Process
Improvement and Capability Determination. IEEE Computer Society Press, 1998

 45

 46

[Emmerich 2007] Emmerich, W.; Aoyama, M.; Sventek, J.: The Impact of Research on Middleware Technology.
Software Engineering Notes, January 2007, pp. 21-46

[Endres 2003] Endres, A.; Rombach, D.: A Handbook of Software and System Engineering. Pearson Education
Limited, 2003

[Fenton 2001] Fenton, N,; Krause, P.; Neil, M.: Probabilistic Modelling for Software Quality Control. Proc. of
the European Conference on Symbolic and Quantitative Approaches to Reasoning and Uncertainty,
Toulouse 2001

[Ferguson 1998] Ferguson, J.; Sheard, S.: Leveraging Your CMM Efforts for IEEE/EIA 12207. IEEE Software,
September/October 1998, pp. 23-28

[Florac 1999] Florac, W. A.; Carleton, A. D.: Measuring the Software Process – Statistical Process Control for
Software Process Improvement. Pearson Education, 1999

[Garcia 2005] Garcia, S.: How Standards Enable Adoption of Project Management Practice. IEEE Software,
Sept./Oct. 2005, pp. 22-29

[Haywood 1998] Haywood, M.: Managing Virtual Teams – Practical Techniques for High-Technology Project
Managers. Artech House, Boston, London, 1998

[Humphrey 2000] Humphrey, W. S.: The Personal Software Process: Status and Trends. IEEE Software,
Nov/Dec. 2000, pp. 71-75

[Kenett 1999] Kenett, R. S.; Baker, E. R.: Software Process Quality – Management and Control. Marcel Dekker
Inc., 1999

[Keyes] Keyes, J.: Software Engineering Handbook. Auerbach Publ., 2003

[Laird 2006] Laird, L. M; Brennan, M. C.: Software Measurement and Estimation: A Practical Approach. John
Wiley & Sons Publ., 2006

[Lecky-Thompson 2005] Lecky-Thompson, G. W.: Corporate Software Project Management. Charles River
Media Inc., USA, 2005

[Müller 2008] Müller, M.; Pfahl, D.: Simulation Methods. In: Shull et al.: Guide to Advanced Empirical
Software Engineering. Springer Publ., 2008, pp. 117-152

[Pearl 2000] Pearl, J.: Causality – Models, Reasoning, and Inference. Cambridge University Press, 2000

[Putnam 2003] Putnam, L. H.; Myers, W.: Five Core Metrics – The Intelligence Behind Successful Software
Management. Dorset House Publishing, New York, 2003

[Richter 2005] Richter, K.: Softwaregrößenmessung im Kontext von Software-Prozessbewertungsmodellen.
Diploma Thesis, University of Magdeburg, Faculty of Informatics, 2005

[Royce 1998] Royce, W.: Software Project Management. Addison-Wesley, 1998

[SEI 2002] SEI: Capability Maturity Model Integration (CMMISM), Version 1.1, Software Engineering Institute,
Pittsburgh, March 2002, CMMI-SE/SW/IPPD/SS, V1.1

[SPICE 2006] The SPICE Web Site, http://www.sqi.gu.edu.au/spice/ (seen July 24, 2006)

[Wang 2000] Wang, Y.; King, G.: Software Engineering Processes – Principles and Applications. CRC Press,
Boca Raton London New York, 2000

[Weisstein 2006] Weisstein, E.: Causal Networks. Script in Computer Science, http://mathworld.wolfram.com/
CausalNetwork.html (August 1, 2006)

[Zettel 2001] Zettel, J.; Maurr, F.; Münch, J.; Wong, L.: LIPE: A Lightweight Process for E-Business Startup
Companies Based on Extreme Programming. In: Bomarius/Komi-Sirviö: Product Focused Software
Process Improvement. PROFES 2001, Kaiserslautern, Sept. 2001, LNCS 2188, Springer Publ., 2001, pp.
255-270

