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Abstract. Software product lines comprise techniques to tailor a pro-
gram by selecting features. Selected features translate into sequenced
program transformations which extend a base program. However, a se-
quence translated from the user selection can be inefficient to execute.
In this paper, we show how we optimize sequences of refactoring trans-
formations to reduce the composition time for product line programs.

1 Introduction

A feature is a characteristic of a program which is of interest to a user [12].
Software product lines (SPLs) comprise techniques to tailor the set of features
of a program to user needs [16]. One technique to implement an SPL is to
define code transformations which successively apply to a base program and
add the desired program characteristic to it. These transformations can include
aspects [30], refinements [4], refactorings [17], and others.

In SPLs, feature-adding code transformations are abstract operations which
a user selects without knowing their implementation. As a result the user (un-
knowingly) may select transformations that undo each other in the sequence of
transformation application. Such a non-optimal refactoring plan may be selected
by accident (as the selector does not know the transformations) but may also
be meaningful to reuse transformations.1 While the composition result is correct
and the composition process succeeds, the composition process is more expensive
than necessary.

In this paper, we lean on database optimization techniques and optimize
sequences of refactorings translated from a user selection of features. We discuss

� This paper summarizes and extends the Master’s Thesis of Liang Liang [19].
1 Suppose, in one configuration of an SPL two classes List and ArrayList should switch
names then one of them must be renamed twice, e.g., List �→ TestList �→ ArrayList. In
a second configuration, in which only List exists, the developer may wish to rename
List into ArrayList, too, and for that both prior refactorings get reused. The second
undoes the first refactoring but both are meaningful.
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the theoretical basics as well as our prototype. Finally, we report on a number
of case studies. In these case studies we show that with our prototype we could
reduce composition time by up to 81%.

2 Background

In this section we introduce the concepts of refactoring along with feature-
oriented programming and refactoring feature modules. These transformations
are issue to optimization later.

2.1 Refactorings

Refactorings are code transformations that alter the structure of code but do
not alter its functionality [24]. As refactoring descriptions like Rename Class are
templates, a developer has to provide parameters to these templates to make
them executable [23]. For example, to execute a Rename Class refactoring, the
developer has to provide two parameters: the class to rename and the new class
name. In common IDEs like Eclipse2, the user provides such parameters by
selecting code and answering GUI forms.

When a refactoring is parameterized and executed, the refactoring engine
commonly executes two phases. First in the verification phase, preconditions are
checked in the code to refactor to ensure the transformation to be performed does
succeed, does not create an incompilable result, and does not alter functionality
of the program. For Rename Class refactoring, the refactoring engine will check
whether (a) the class to rename does exist and (b) the class created by the
refactoring does not exist [26].

Second in the transformation phase, transformation actions are performed on
the code elements specified as parameters for the refactoring. That is, for Rename
Class, the specified class is renamed, constructors of the class are renamed, and
finally every reference to the class or constructors is updated in the remaining
code [8]. In the following, we denote a refactoring R that replaces a code element
X with a code element Y by RX �→Y.

2.2 Feature-oriented Programming and Refactoring Feature

Modules

Features are user-visible program characteristics of an SPL and are organized
in feature models [12]. Features are implemented by code transformations in
feature-oriented programming defined in feature modules [4]. The feature mod-
ules, however, are hidden from the user – she configures the SPL by selecting
the feature modules based on their semantic description. Commonly, the fea-
ture modules add members and classes to a program, and extend methods (we
call them common features). Recently, however, we discovered that structure of
software also is a program characteristic which a user might be interested in [17].

2 http://www.eclipse.org/
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Restructuring transformations were added as SPL transformations to in-
tegrate programs, foster reuse, and to tailor non-functional properties of pro-
grams [17,27]. Feature modules which host such restructuring transformations
were called Refactoring Feature Modules (RFMs) [17]. For a user, RFMs and
common features are indistinguishable. When a user selects common features,
code is added to the configured program such that the program provides certain
functionality [4]. When a user selects RFMs the structure of the synthesized
program is altered, e.g., classes are named differently than defined in the class-
adding common feature.

Feature Module F1

_elements

get()

List Queue

Feature Module R2

Rename class:List �→TestList

Feature Module R3

Rename method:TestList.get �→pop

Feature Module R4

Rename class:TestList �→ArrayList

Feature Module R5

Rename class:Queue �→myQueue

Feature Module R6

Rename class:ArrayList �→Queue

Fig. 1. Running RFM example.

In our running example for this paper in
Figure 1, there is one common feature module
F1. Additionally, there is a number of RFMs,
R2 to R6. When a user selects feature F1 and
does not select any RFM, the composed pro-
gram will be a copy of the code of F1. When a
user selects all features (top-down order), F1
along with R2 to R6 the composed program
will expose the functionality of F1 but will
have a different structure. Specifically, when
all features are selected, then the resulting
code will be a class myQueue with no mem-
bers and a class Queue with a field elements

and a method pop.

3 Optimizing Refactoring

Sequences

We consider two ways to optimize a given
sequence of refactorings: optimizing the ver-
ification phases and optimizing the transfor-
mation phases of the sequenced refactorings.
Optimizing verification phases in a sequence of refactorings means to check
whether preceding refactorings establish preconditions of later refactorings.
When a refactoring’s precondition is satisfied by an earlier refactoring in a se-
quence, the program does not have to be validated for the latter refactoring, and
thus not parsed and traversed for verification issues [26,14]. Thereby, checking
a program might be expensive as the program to check might be large [14].

Optimizing the transformation phase for a sequence of refactorings means to
fuse actions performed by successive refactorings. For example, we can fuse two
successive refactorings if both refactorings rename the same method, i.e., we can
replace two refactorings R1A �→B and R2B �→C by CxA �→C. As we do not have to
traverse the code twice to (parse it and set up the type system and) look for
calls to the method and update them, we can gain performance benefits. The
optimizations we will discuss work without and with prior code analysis, i.e.,
they work algebraic and cost-based respectively.
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Feature Module F1

_elements

get()

List Queue

Feature Module C2

Rename class:List �→Queue

Feature Module C3

Rename method:Queue.get �→pop

Feature Module R4

Rename class:Queue �→myQueue

Feature Module F1

_elements

get()

List Queue

Feature Module C2

Rename class:List �→ArrayList

Feature Module C3

Rename method:ArrayList.get �→pop

Feature Module R5

Rename class:Queue �→myQueue

Feature Module R6

Rename class:ArrayList �→Queue

(a) Incorrect optimization result. (b) Correct optimization result.

Fig. 2.

3.1 Algebraic Optimization

In this work, we concentrate on fusing transformation phases of refactorings to
improve composition performance. To optimize a given sequence of refactorings,
we reorder sequenced refactorings and fuse them finally. We reorder refactorings
to group refactorings of which action phases could be fused, i.e., where the
output code element of the earlier refactoring is the input code element of the
following refactoring. We identify these refactorings by analyzing the parameters
of the sequenced RFMs. The reordered RFM sequence then is folded by fusing
successive RFMs using fusing rules.

Basic Concept. The composition of our running example in Figure 1 can
be optimized when all features contribute to a program. The class List gets
renamed three times. We could reorder the figure’s refactorings to first apply
all refactorings which transform the initial class List (RFMs R2, R4, and R6),
then the refactoring on method get (R3), and finally R5 which transforms class
Queue. After reordering, we could fuse R2List�→TestList with R4TestList �→ArrayList, and
R6ArrayList �→Queue to a new Rename Class refactoring C2List�→Queue as shown in
Figure 2a.

Since we reorder refactorings, we may have to update parameters of com-
muted refactorings. In Figure 1, we have to update commuted R3 to accept the
parameter Queue.get instead of TestList.get (see feature C3 in Fig. 2a) because
R4 and R6 got reordered and precede R3 finally.
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a)

R2 R3 R4 R5 R6Base

predecessor dependency
set−up dependency

b)

C3
R2 R5 R6Base (R3’)R4

c)

C3
R5 R6Base (R3’)(R2+R4)

C2

Fig. 3. Optimization steps in running example of Fig. 1.

The optimization result of Figure 2a is in error because newly created C2
will create a second class Queue and thus will fail.3 To prevent errors caused
by reordering we have to analyze preconditions of refactorings in a refactoring
sequence. For that, we – before reordering – analyze the sequenced refactorings
for interdependencies. Especially, we look for two kinds of interdependencies: (1)
set-up dependencies toward preceding RFMs where one preceding refactoring
sets up some code elements required by a subsequent refactoring, and (2) prede-
cessor dependencies toward preceding refactorings where a preceding refactoring
requires another refactoring to establish a required deletion.4 For our running
example, we find that R6 exposes a set-up dependency towards R4 but also
a predecessor dependency towards R5.5 Furthermore, we find that R3 and R4
expose a set-up dependency each towards R2 but no predecessor dependency
towards any other refactoring.6 The complete dependency graph for Figure 1 is
given in Figure 3a.

To optimize the RFM sequence of Figure 3a, we iterate the sequence of refac-
torings and calculate potential fuse partners. For instance, we calculate, that R2
could be fused with R4 and R4 with R6 because they rename the same initial
code element List. Using the computed dependency graph we try to reorder R4
and R6 according to their fusing potential. However, we only commute refac-

3 In Java and alike languages fully qualified names, e.g., of classes, must be unique [9,
p.123ff].

4 A special predecessor dependency occurs when a Move Method RFM or Inline
Method RFM follows an Extract Interface RFM and both operate the same class.

5 R4 creates class ArrayList which R6 requires to exist. R5 removes Queue which R6
requires to not exist.

6 R2 creates class TestList which is required by R3 and R4.
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torings that do not have predecessor dependencies among each other. Further,
we update the parameters of the two refactorings we commute when both ex-
pose set-up dependencies toward the same predecessor refactoring and share
fully qualified names. For instance, we commute R3 with R4 because R4 can
potentially be fused with R2. As R3 and R4 both expose set-up dependencies
toward R2 and parameters share the identifier TestList, we update R3 to be-
come C3ArrayList.get �→pop, cf. Figure 3b. However, we do not reorder R6 because
its predecessor dependency towards R5 disallows commuting with R5.

Fusing refactorings. In the second step of our optimization, we iterate
the reordered and adapted list of RFMs and fuse successive RFMs when
the fuse result again is a standard refactoring according to [8]. We fuse
two refactorings when there is a set-up dependency between them, the com-
plete precondition of the later refactoring is satisfied by the former refac-
toring, and when the fused refactoring again is a standard refactoring.

Feature Module R3

Rename method:TestList.get �→pop

Feature Module R7

Rename method:myQueue.pop �→insert

(a)

Feature Module R7’

Rename method:myQueue.get �→pop

Feature Module R3’

Rename method:TestList.pop �→insert

(b)

Feature Module R7

Rename method:myQueue.pop �→insert

Feature Module R3

Rename method:TestList.get �→pop

(c)

Fig. 4. Unknown commutativity.

This holds true, for example, when two Re-
name Method refactorings follow each other
with R1Stack.push �→add and R2Stack.add �→insert –
the fused refactoring again is a Rename
Method refactoring C1Stack.push �→insert. We
summarize fusing rules for refactoring actions
in Table 1.

In our running example, we fuse the Re-
name Class RFM R2List �→TestList with its suc-
cessor Rename Class RFM R4TestList �→ArrayList

to become the new Rename Class RFM
C2List�→ArrayList, see Figure 3c. The optimiza-
tion result which corresponds to Figure 3c is
shown in Figure 2b. Note, that we do not
change C3 and R5 as they do not have opti-
mization potential.

Name capture. When a method A is re-
named by a Rename Method refactoring, all
methods that override A or that are overrid-
den by A are renamed accordingly [8]. Name
capture is an error in refactoring that oc-
curs when methods override each other after
a refactoring executed which did not over-
ride each other before the refactoring exe-
cuted [24,23,29]. When reordering refactor-
ings, we must guarantee that we do not introduce name capture, i.e., that the
optimized refactoring sequence still produces the same program. For illustration,
consider the RFMs in Figure 4a. By solely analyzing the RFMs we cannot decide
whether myQueue.pop (required by R7) is created by R3, i.e., whether there is
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Table 1. Fusing rules to optimize RFM sequences.

Preceding RFM Following RFM Merged RFM

Rename ClassC1⇒C2 Rename ClassC2⇒C3 Rename ClassC1⇒C3

Rename FieldF1⇒F2 Rename FieldF2⇒F3 Rename FieldF1⇒F3

Rename MethodM1⇒M2 Rename MethodM2⇒M3 Rename MethodM1⇒M3

Extract InterfaceC1⇒I2 Rename ClassI2⇒I3 Extract InterfaceC1⇒I3

Rename MethodM1⇒M2 Inline MethodM2 Inline MethodM1

Move ClassC1⇒C2 Move ClassC2⇒C3 Move ClassC1⇒C3

Rename ClassC1⇒C2 Collapse hierarchy(C2,C3)⇒C3 Collapse Hierarchy(C1,C3)⇒C3

Extract ClassC1⇒C2 Rename ClassC2⇒C3 Extract ClassC1⇒C3

Extract MethodM1⇒M2 Rename MethodM2⇒M3 Extract MethodM1⇒M3

Extract ClassC1⇒C2 Rename ClassC2⇒C3 Extract ClassC1⇒C3

Extract ClassC1⇒C2 Move ClassC2⇒C3 Extract ClassC1⇒C3

Extract SCC1⇒C2 Rename ClassC2⇒C3 Extract SCC1⇒C3

Extract SCC1⇒C2 Move ClassC2⇒C3 Extract SCC1⇒C3

Extract SuperclassC1⇒C2 Rename ClassC2⇒C3 Extract SuperclassC1⇒C3

Extract SuperclassC1⇒C2 Move ClassC2⇒C3 Extract SuperclassC1⇒C3

Push-Down FieldF1⇒F2 Pull-Up FieldF2⇒F1 ∅

Push-Down MethodF1⇒F2 Pull-Up MethodF2⇒F1 ∅

Rename ClassC1⇒C2 Rename ClassC2⇒C1 ∅

Rename MethodM1⇒M2 Rename MethodM2⇒M1 ∅

Rename FieldF1⇒F2 Rename FieldF2⇒F1 ∅

Extract ClassC1⇒C2 Collapse hierarchy(C1,C2)⇒C2 ∅

Extract SCC1⇒C2 Collapse hierarchy(C1,C2)⇒C2 ∅

Extract SuperclassC1⇒C2 Collapse hierarchy(C1,C2)⇒C2 ∅

Extract InterfaceC1⇒I1 Collapse hierarchy(C1,I1)⇒C1 ∅

Rename MethodM1⇒M2 Remove Setting MethodM2 Remove Setting MethodM1

Rename FieldF1⇒F2 Inline TempF2 Inline TempF1

Introduce Explain. VariableF1 Rename FieldF1⇒F2 Introduce Explain. VariableF2
Rename MethodM1⇒M2 Encaps. CollectionM2⇒{M3,M4} Encaps. CollectionM1⇒{M3,M4}

Introduce Foreign MethodM1 Rename MethodM1⇒M2 Introduce Foreign MethodM2

Encaps. CollectionM1⇒{M2,M3} Rename MethodM2⇒M4 Encaps. CollectionM1⇒{M4,M3}

Repl. Param. with Explic.
Meth.P1⇒M1

Rename MethodM1⇒M2 Repl. Param. with Explic.
Meth.P1⇒M2

Repl. Constr. with FMM1⇒{M1,M2} Rename MethodM2⇒M3 Repl. Constr. with FMM1⇒{M1,M3}

Introduce POM1⇒{M1,C1} Rename ClassC1⇒C2 Introduce POM1⇒{M1,C2}

Rename ClassC1⇒C2 Inline ClassC2,C3⇒C3 Inline ClassC1,C3⇒C3

Rename ClassC1⇒C2 Repl. SC with FieldC2,C3⇒F1 Repl. SC with FieldC1,C3⇒F1

Introduce Local Extens.C1⇒{C1,C2} Rename ClassC2⇒C3 Introduce Local Extens.C1⇒{C1,C3}

Repl. Array with ObjectF1⇒C1 Rename ClassC1⇒C2 Repl. Array with ObjectF1⇒C2

Dupl. Observed DataC1⇒{C1,C2} Rename ClassC2⇒C3 Dupl. Observed DataC1⇒{C1,C2}

Repl. Temp with QueryF1⇒M1 Rename MethodM1⇒M2 Repl. Temp with QueryF1⇒M2

Repl. Method with MOM1⇒{M1,C1} Rename ClassC1⇒C2 Repl. Method with MOM1⇒{M1,C2}

Repl. DV with ObjectF1⇒{F2,C1} Rename ClassC1⇒C2 Repl. DV with ObjectF1⇒{F2,C2}

Repl. TC with ClassF1⇒{F2,C1} Rename ClassC1⇒C2 Repl. TC with ClassF1⇒{F2,C2}

Repl. TC with StrategyCF1⇒C1 Rename ClassC1⇒C2 Repl. TC with StrategyCF1⇒C2

Repl. TC with StrategyF1⇒C1 Rename ClassC1⇒C2 Repl. TC with StrategyF1⇒C2

Repl. Magic Number with SCoF1 Rename FieldF1⇒F2 Repl. Magic Number with SCoF2

SC=Subclass;TC=Type Code;PO=Parameter Object;MO=Method Object;FM=Factory
Method;SCo=Symbolic Constant;DV=Data Value
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a set-up dependency from R7 towards R3. There is such set-up dependency if
myQueue is a subclass or superclass of TestList (then R3 creates myQueue.pop)
– reordering R3 and R7 would then require to update the parameters of both
refactorings (see Fig. 4b). If myQueue is not a subclass or superclass of TestList,
then reordering both refactorings requires no update to their parameters (see
Fig. 4c). Name capture must also be prevented for fields (field hiding [9, p.206]
– similar to macro extension [15]).

We present three approaches which avoid name capture. In approach #1, we
track which refactoring parameter (fully qualified name) emerges out of which
code element in the base code. By analyzing relationships between the code
elements in the base code we can then decide whether to update the refactoring
parameters or not. In approach #2, we disallow reordering of two refactorings
when both reference methods, e.g., Rename Method refactoring, or when both
reference fields. However, we only must disallow reordering when field or method
names match in the refactorings to be reordered. In approach #3, we define all
the elements, which a refactoring alters inside feature modules. As a result, we
know all (overridden) methods which are effected by a Rename Method RFM.
However, we do not consider the last approach practicable because methods that
override a renamed method may change across configurations and we cannot
define an RFM for every configuration.

Heuristical reordering. Reordering itself can produce performance benefits
for the composition process, too. For example, when a Rename Field RFM follows
an Encapsulate Field RFM7, then reordering is beneficial though both RFMs
cannot be fused. The reason is that the field to be renamed can be referenced
multiple times in the transformed code but is only referenced twice after encap-
sulating it (inside the get and set method).

Secondly, to reorder a Hide Method refactoring8 with a Rename Method
refactoring is beneficial. After hiding the method, the composer can reason on
the new visibility qualifier of that method and thus can prune the code traversed
for renaming. For example, if hiding the method push produces a private method
then for renaming the method the composer just needs to traverse the class
(as no further references can exist). Similar optimizations are possible when a
Rename Field refactoring follows a Hide Field refactoring.

Search spaces. We could create sets of optimized refactoring plans during
algebraic optimization phase which all generate the same code. Doing so, we can
find additional optimization potentials. For instance, at the moment we do not
optimize the following sequence of refactorings because we cannot detect any
optimization potential:

7 Encapsulate field adds get and set methods for the field to encapsulate. Second the
refactoring transformation replaces every reference to this field by a call to either
the get or set method.

8 Hide Method refactoring reduces the visibility of the method as far as possible [8].
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R1RenameClass:C1�→C2 • R2MoveClass:C2 �→C3 • R3RenameClass:C3�→C4 (1)

We can fuse neither R1 with R2 nor R2 with R3 because the resulting refac-
toring would not be a standard refactoring – fusing them would exceed our set
of operations.9 However, we also do not consider optimization potential between
R1 and R3 because the output identifier of R1 does not match the input iden-
tifier of R3. If we commute R1 with R2 or R2 with R3, however, then a new
optimization potential emerges between (reordered) R1 and (reordered) R3.

3.2 Cost-based Optimization

R2
�

R3
�

R7’
�

R4
�

Fig. 5. Parallel
RFM actions.

We can analyze the code to be refactored to estimate the
execution costs for individual refactorings; from there we
can further optimize a refactoring sequence. We call opti-
mizations which are based on code analyses and cost es-
timations cost-based optimization. We envision to identify
refactorings which alter distinct parts of a program. If we
can reorder these refactorings to succeed each other, we
can parallelize their execution, i.e., we can load the distinct
program parts in parallel. To implement that, we envision
to collect visibility qualifiers and inheritance hierarchies
from the program to refactor. If then the visibility of two code elements is very
restricted, e.g., private or protected, and both occur in different class (hierarchies)
according refactorings perform on distinct pieces of code.

As an example, consider the Rename Method refactorings R3TestList.get �→pop

and R7myQueue.pop �→insert where both methods are analyzed to be qualified as pro-
tected. TestList shall neither a superclass nor a subclass of myQueue and thus
R3 and R7 transform distinct parts of a program. In that case we can infer an
optimization potential and try to make both refactorings successors. We then
can load TestList and myQueue in parallel and execute R3 and R7 in parallel as
shown in Figure 5. We can also parallelize Rename Field and Rename Method
RFMs if according fields or methods are qualified as private and all are hosted
in different classes.10

If the visibility is private or protected and – in the latter case – the inheri-
tance hierarchy is small, then we can reduce the code which must be loaded in
order to refactor it. This reduces the number of buffer misses and thus increases
performance.11

9 We could provide composite refactorings which do renaming and moving within one
step (as shown before [14]) but we refrained due to the infinit number of possible
refactoring combinations [14].

10 Name capture cannot occur for private elements in Java and alike languages [9,
p.228].

11 Buffer misses may occur when an inappropriate page replacement strategy is used
by the operating system.
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4 Case Studies

We now report on our prototype implementation and its evaluation.

4.1 Prototype

We implemented the presented approach for algebraic optimization of RFMs.
Currently, a separate optimizer prototype operates RFMs in a step separately
before the composer tool runs. It first tries to reorder RFMs if they expose
optimization potential.12 After that, the prototype fuses RFMs according to the
rules presented before, cf. Tab. 1.13 Finally, the prototype generates RFMs into
a new folder Optimized and generates a new refactoring plan which uses the new
RFMs. In future works, we think over integrating the optimizer tool into the
composer tool. Integrating both tools will alleviate performance penalties in the
current prototype of loading RFMs twice (once for optimization and once for
composition) and of writing optimization result to folder Optimized.

4.2 Study Setup

To evaluate the proposed optimization approach, we now analyze the composi-
tion time of RFM-featured SPLs. We compare the times of composing the un-
optimized sequence of common features and RFMs with the composition time
of the generated optimized sequence.14

We took programs of different size and purpose as study objects. We com-
posed the common feature modules and RFMs and took the composer’s runtime.
Then we run our optimizer tool and took its runtime, too.15 The tool creates
the folder Optimized together with the optimized sequence of RFMs. Finally, we
compose the common feature modules and RFMs inside the Optimized folder
and compare the composition time to the time of the unoptimized composition.
We give an overview on our measurements in Table 2.16

In order to analyze the effect of a growing number of RFMs, we applied
sequences of RFMs of different length to individual programs. In order to analyze
the effect of a growing code size on the performance of RFM sequences (and thus

12 Detecting name capture is not yet implemented.
13 In our prototype, we implemented the first five fusing rules of Table 1.
14 The optimizer prototype solely generates RFMs into the Optimized folder but does

not copy common feature modules (it does copy RFMs). To measure the composition
performance for the optimized RFM sequence, we manually copy the common feature
modules into the Optimized folder.

15 To estimate the potential of future integration with the composer tool we splitted
the runtime of the optimizer into RFM loading time, optimization process time,
RFM-writing time, and time to remove temp folders (clearing time).

16 The measurements were performed on a Microsoft Windows XP Home Edition SP2
on an Intel R© CoreTM2 CPU T5500 @ 1.66GHz, 667MHz FSB, 0.99 GB RAM. The
given measurements are averages of 10 individual runs, Liang lists the single run
times in [19].
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the optimization benefit) we measure small-scale cases to large-scale cases. As
we do not change the composition of common features we prune the studies to
only have one common feature module each.

Simple List. As a proof of concept we applied three different sequences of RFMs
to a conceptual list implementation, the sequences are shown in Figure 6. Ac-
cording RFM sequences calculated by our prototype are given in Figure 7. In
the studied case of Figure 6a, we fuse an RFM R1 that extracts the interface
AbstractList from class List with reordered RFMs R3 and R5 which rename the
extracted interface (C1 in Fig. 7a). In the sequence shown in Figure 6b, we detect
the potential of fusing R2, R5, and R8 but can only reorder and fuse R5 with
R2 – R8 cannot be fused because it cannot be commuted with R4 (predecessor
dependency). Reordering of R5 requires the prototype to update the parameters
of R3 (C2 in Fig. 7b).

TankWar. We analyzed TankWar an SPL of arcade games for desktop computer
and handy developed prior to this evaluation at Magdeburg University. The
study is still small-scale but provides functionality (in contrast to the Simple
List case).

Workbench.texteditor. In order to analyze the performance effect of optimizing
RFM sequences, we further must pay attention to the size of the program to be
refactored. For that, we reused a large-scale study of the Eclipse17 library work-

bench.texteditor from prior work [18]. To this library, we applied three different
sequences of RFMs with a length ranging from 10 to 55 RFMs.

ZipMe. We finally analyzed a study of a compression library ZipMe from prior
work [17] which showed us that our optimization effort may be worthless and,
thus, derogatory. That is, in the ZipMe study, there is no optimization potential
and thus, the runtime of our optimizer tool directly increases composition time.

In the Table 2, we summarize the measured runtimes of the optimizer tool
as well as the runtimes of the composition tool on the unoptimized and on
the optimized RFM sequence. In some cases we gained performance increases18,
e.g., for case Workbench.texteditor (c) we gained a performance benefit of 81%
through optimization. In many cases, composition time increased with optimiza-
tion. For example, the unoptimized composition time for case Simple List (a) is
12018.6ms and the optimized composition time including optimization time is
18805ms, i.e., a performance loss by 56%. Nevertheless, we did not fail opti-
mizing. The increased composition time is caused by the optimizer prototype
operating independently from the composer tool. Times for loading RFMs and
writing optimization results, thus, contribute to both the composition tool and
the optimizer. When the optimizer is integrated with the composition tool (pos-
sible future work), RFMs would be loaded only once and the need to write the

17 http://www.eclipse.org/
18 Unoptimized composition time > (Loading T ime + Optimization +

Write RFMs&Plan+ Clearing time+Optimized composition time)
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Feature Module F1

get()

Element
position
_elements
enqueue()

QueueList
position
_elements
get()

Feature Module R1

Extract Interface: List �→
AbstractList

Feature Module R2

Rename method: Queue.enqueue
�→first

Feature Module R3

Rename class: AbstractList �→
TestList

Feature Module R4

Inline method: Queue.first

Feature Module R5

Rename class: TestList �→
SuperList

(a)

Feature Module R1

Rename class: List �→TestList

Feature Module R2

Rename class: TestList �→
ArrayList

Feature Module R3

Rename method: ArrayList.get
�→pop

Feature Module R4

Rename class: Queue �→

MyQueue

Feature Module R5

Rename class: ArrayList �→
LinkedList

Feature Module R6

Rename method: LinkedList.pop
�→topmost

Feature Module R7

Rename method:
LinkedList.topmost() �→first

Feature Module R8

Rename class: LinkedList �→
Queue

(b)

Feature Module R1

Rename field: List.position �→

index

Feature Module R2

Rename class: List �→TestList

Feature Module R3

Rename class: TestList �→
ArrayList

Feature Module R4

Rename method: ArrayList.get()
�→pop

Feature Module R5

Rename class: ArrayList �→
LinkedList

Feature Module R6

Rename method:
LinkedList.pop() �→topmost

Feature Module R7

Encapsulate field:
LinkedList.index

Feature Module R8

Rename method:
LinkedList.topmost() �→first

Feature Module R9

Rename method:
LinkedList.first() �→getHead

Feature Module R10

Rename class: LinkedList �→
MyList

(c)

Fig. 6. Simple list study.
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Feature Module C1

Extract Interface: List �→
SuperList

Feature Module C2

Inline method: Queue.enqueue

(a)

Feature Module C1

Rename class: List �→LinkedList

Feature Module C2

Rename method: LinkedList.get
�→first

Feature Module R4

Rename class: Queue �→

MyQueue

Feature Module R8

Rename class: LinkedList �→
Queue

(b)

Feature Module R1

Rename field: List.position �→

index

Feature Module C1

Rename class: List �→MyList

Feature Module C2

Rename method: MyList.get �→
getHead

Feature Module R7

Encapsulate field: MyList.index

(c)

Fig. 7. Simple list study optimization result.

optimized RFM sequence to harddisk vanishes. To respect this, we split the run-
time of the optimizer and separated times for loading the RFMs and writing the
RFMs from the actual optimizing process. That is, in future work, RFMs are
considered to be loaded once in the composer, optimized and executed by the
composer, without reloading them and without writing the optimized sequence.
When neglecting the costs of loading RFMs twice and writing optimized RFM
sequences, we get a significant performance benefit for all cases but the ZipMe
case (no fusing rules were applicable for the ZipMe case).

From the measurements we observed that the optimization benefit in-
creases with a growing size of the program to be transformed sequentially, the
biggest performance benefits were measured for the biggest program (Work-
bench.texteditor). We also observed that with a growing number of RFMs with
optimization potential the optimization benefit increases, too. In the case of
ZipMe, the optimizer could not produce a benefit and, thus, for this case opti-
mization effort is derogatory.

4.3 Threats to Validity

The measurements and benefits are specific in two respects. First, they depend
on the performance of loading RFMs. If to load an RFM takes a long time,
reducing the number of loads saves a lot time. Second, the measurements and
benefits depend on the time of executing a single RFM action. If executing a
single RFM action takes a long time, reducing the number of executions saves a
lot time.

The RFM composer tool we used (the only one we know of, downloaded Feb
2nd, 2010) is written for flexibility and not for performance. Thus, for other RFM
composers the numbers may be different. Nevertheless, we expect for those tools
performance benefits as well when optimizing RFM sequences.
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5 Related Work

Researchers composed transformations and refactorings to composite transfor-
mations (refactorings) before, e.g., [26,14,6,13]. They intended to group refac-
torings or to guarantee applicability or to improve refactoring execution time of
the composite refactoring. Others formalized the refactoring effects and also an-
alyzed preconditions of individual refactorings [23]. We focus on the performance
gained through transforming a sequence of refactorings. For that, we reorder and
replace single refactorings as well as (sub)sequences of refactorings and create
a different ad-hoc sequence of refactorings. We concentrate on optimized refac-
toring sequences that only consist of standard refactorings because with RFMs
refactorings are operations to which optimized sequences are limited to, i.e., we
stay in the space of standard refactoring operations.

Dig fuses sequences of refactorings [7, p.95], sequences which were recorded
independently. He adapts the parameters of refactorings in order to sequentialize
the according refactorings. Similarly, Lynagh fuses patches and for that resolves
conflicts by commuting and reverting patches [20]. It may happen that by fusing
sequences of patches and refactorings, the resulting sequence may shrink. In
contrast to prior work we intend to shrink a single sequence and for that fuse
refactorings and reorder them.

Researchers describe how to calculate dependencies between transformations
in general and refactorings in particular [21,22]. We also compute dependencies
between refactorings, so prior research can be seen as a basis for our research.
Based on dependencies between refactorings, we introduce fusing rules for in-
dividual refactoring actions and allow to update refactoring definitions (update
refactoring parameters) when reordering. Further, we analyze optimizations of
refactoring sequences based on analyses of the code to refactor (cost-based op-
timization).

Pérez uses artificial intelligence techniques to derive refactoring plans that
minimize code smells [25]. We transform sequences of refactorings using fusing
rules in order to yield performance benefits for their executions. Summarizing,
we aim at different things and, thus, probably produce different refactoring se-
quences.

Relational algebra organizes a set of operations (Selection, Projection, Join)
users can execute on databases [5,10]. With SQL, a user of database manage-
ment systems, however, commonly describes declaratively the information she
needs [28]. The algebra expression translated from the declarative query may be
suboptimal and thus it is optimized algebraically and cost-based [11]. Algebraic
optimization applies rules to the operation plan without analyzing the data,
e.g., selections are reordered to execute early and projections are fused [10].
Cost-based optimization uses meta data of the database relations to fasten the
query even more, e.g., whether relations are sorted [28]. In distributed database
management systems, the query result can be computed on different systems in
parallel to improve query time [1,5,11]. With features, a user declaratively defines
the program she needs but does not formulate their implementations. During
composition, the features are translated into sequenced common feature mod-
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ules and RFMs – a sequence which may be suboptimal. In this paper, we showed
how a sequence of refactorings inside RFMs can be optimized algebraically and
cost-based, i.e., with and without analyzing the code to refactor. In our envi-
sioned cost-based optimization we parallelize RFMs to improve composition time
which then will closely correlate to parallel database management systems. Of
course, database management systems do not execute program transformations.

Batory et al. related program transformations to category theory and, thus,
sketched the formal basis of our optimizations [2,3]. Our fusion rules and heuris-
tical reordering of refactoring transformations implement Batory’s abstract con-
cepts of combining transformation arrows. We additionally presented ideas on
optimizing sequences of refactorings cost-based.

6 Conclusions

Product line users tailor programs by selecting features. Selected features trans-
late into program transformations which execute sequentially on a base program.
Thereby, a sequence translated directly from a user selection can be inefficient.
In this paper, we showed how to optimize sequences of refactoring transforma-
tions to reduce the composition time of product line programs. We presented
our prototype and evaluated the concept in several case studies. We observed
that the optimization concept reduces the time to compose a program in most
case studies.
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