Nr.: FIN-007-2010

Hurdles in Refactoring Multi-Language Programs

Hagen Schink and Martin Kuhlemann

Arbeitsgruppe Datenbanken

Fakultat fir Informatik
Otto-von-Guericke-Universitat Magdeburg

Nr.: FIN-007-2010

Hurdles in Refactoring Multi-Language Programs

Hagen Schink and Martin Kuhlemann

Arbeitsgruppe Datenbanken

Technical report (Internet)

Elektronische Zeitschriftenreihe

der Fakultat fir Informatik

der Otto-von-Guericke-Universitdt Magdeburg
ISSN 1869-5078

Fakultat fur Informatik
Otto-von-Guericke-Universitat Magdeburg

Impressum (§ 5 TMG)

Herausgeber:
Otto-von-Guericke-Universitat Magdeburg
Fakultat fur Informatik

Der Dekan

Verantwortlich fiir diese Ausgabe:
Otto-von-Guericke-Universitat Magdeburg
Fakultat fir Informatik

Hagen Schink

Postfach 4120

39016 Magdeburg

E-Mail: hagen.schink@gmail.com

http://www.cs.uni-magdeburg.de/Technical_reports.html

Technical report (Internet)
ISSN 1869-5078

Redaktionsschluss: 26.11.2010
Bezug: Otto-von-Guericke-Universitat Magdeburg

Fakultat fur Informatik
Dekanat

Hurdles in Refactoring
Multi-Language Programs

Hagen Schink and Martin Kuhlemann

University of Magdeburg,
Germany
hagen.schink@gmail.com, martin.kuhlemann@ovgu.de

Abstract. Today, documents of different programming languages can
be involved in the implementation of a single software application. These
applications are called multi-language software applications. Source code
of one programming language may interact with code of a different pro-
gramming language. By refactoring a document of one programming lan-
guage the interaction of this document with documents of another pro-
gramming language may break. We present a study on refactoring multi-
language software applications. After that, we automated object-oriented
refactorings on a multi-language software application. We evaluate our
findings with different case studies and report our results.

1 Introduction

Today, general-purpose and domain-specific languages are used in concert to
implement software applications [20, 17,26, 4, 33,12][9, p. 169]. The usage of dif-
ferent programming languages allows us to accomplish complex tasks with less
effort. However, pieces of code written in different languages may interact. For
instance, we can use Java together with SQL [2]. Java allows us to implement
complex algorithms, whereas SQL is efficient to describe database queries. In
the end, we can use the algorithms defined in Java to process the data queried
with SQL. There are other examples of interaction between code of different
languages [25, 13][38, p. 143].

A refactoring is a code transformation which alters the structure but not the
semantics of code [31][10, p. 53]. Refactorings exists for several programming
languages and programming paradigms, e.g. for different object-oriented pro-
gramming languages, UML diagrams, and database schemas [10,24, 32,37, 34,
1]. However, a refactoring described for code of one language does not describe
the effects on interacting code written in different languages.

We present a study on how to refactor multi-language software applications.
We apply refactorings on the different documents of a sample application. We
implemented two of the described object-oriented refactorings for the multi-
language sample application. We apply the implemented refactorings on a num-
ber of different software applications and evaluate our findings. As a result, we
describe different effects of refactoring multi-language software applications. In
summary, we conclude that a general approach to refactoring multi-language
software applications is hard, if not impossible, to implement.

2 Background

In this section we introduce the term multi-language software application and
describe challenges of refactoring multi-language software applications.

2.1 Multi-Language Software Application

A software application is a Multi-Language Software Application when it is im-
plemented using different general-purpose and domain-specific languages [26].
The usage of different general-purpose and domain-specific languages is referred
to as polyglot programming [8][9, p. 169].

Polyglot programming is common in modern software development [9]. But
the specific usage of polyglot programming differs between programs.

— SQL is a standardized query language for databases and, therefore, was not
intended itself as a general-purpose programming language [30]. It is possible
to reference SQL statements in general-purpose programming languages like
C++ or Java [16,23, 2].

— XML is used in different application areas mainly for data exchange pur-
poses [15]. XML is also used for describing configuration files or structured
text data that can be referenced in general-purpose programming languages
like C++ or Java [4,15].

— C++ and different scripting languages, e.g. Java Script, can be called from
or embedded in Java [25,13]. The interfaces to Java are described by the
Java Native Interface for C++, and the Java Specification Request 223 for
scripting languages [25, 13].

Not using polyglot programming would make common tasks in software devel-
opment more difficult, e.g. database access and data exchange [8, p. 9-10].

2.2 Multi-Language Refactoring

A refactoring is the semantic preserving modification of a program [31][10, p.
53]. A common refactoring is the RENAME FIELD REFACTORING. The RENAME
FIELD REFACTORING is used, if the name of a field does not describe the purpose
of the field. For instance, we want to refactor a field in the class Employee.
Employee encapsulates a field which stores data of an employee and, therefore,
encapsulates the fields name and surname. Figure 1 shows the application of a
RENAME FIELD REFACTORING on the field name. By renaming the field name to
firstname we explicitly describe the purpose of the field.

Besides source code a software application may contain documentation, de-
sign documents, specifications, and unit tests et cetera [29]. A document type
describes a set of documents that share a common paradigm, e.g. source code
of object-oriented programming languages, SQL statements, or specifications.
For instance, Java and C++ have a common document type, because both are
object-oriented languages. Refactorings for different document types exist, e.g.

Employee RENAME FIELD REFACTORING Employee
+name: String N +firstName: String
+surname: String +surname: String

Fig. 1. The figure shows the UML model of the class Employee before (left) and after
(right) the application of the Rename Field Refactoring.

+name: String
+surname: String Employee

1
+
UNKNOWN MODIFICATION
RENAME METHOD REFACTORING —
1 OR REFACTORING

+

+firstName: String

+surname: String

Fig. 2. The figure shows the initial Rename Method refactoring (left) and the respective
modification of the database schema (right).

for object-oriented, functional, and logical programming languages, UML di-
agrams, and database schemes [10,24, 32,37, 34, 1]. These refactorings do not
describe at all or not in detail how they influence different document types. For
instance, consider a class Employee and a table Employee as shown in Fig. 2. We
assume that the class Employee relates to the table Employee by name. Based on
the relation, a software tool is able to retrieve a dataset from the table Employee
and to provide that dataset as an instance of class Employee. The class Employee
and the fields name and surname are connected to the table Employee and the
respective columns name and surname defined in that table. We apply a RENAME
FIELD REFACTORING on the field name. To preserve the relation between field
name and column name we have to modify the database schema, too, though, the
modification of the database schema is not part of the refactoring.

3 Refactoring a Multi-Language Software Application

HRManager is a rudimentary software application implemented by the authors
to manage employee data. HRManager founds the basis upon we show effects of
refactoring multi-language software applications. HRManager has been imple-
mented using two programming languages, an object-relational mapper, and a
database. We applied a number of refactorings on HRManager. Figure 3 shows
the document types used in HRManager and how respective documents interact.
We use HRManager as our running example throughout the paper, so we will
present the different document types and their relations in detail.

Java is used to declare classes, e.g. Employee, Manager, and Department.
Figure 4 shows the class hierarchy of Employee. All classes of HRManager have

Clojurele—{ Java l«>{Hibernate J«—>{ SOL |

Fig. 3. The different document types in HRManager and their relation.

employees

Employee
7 > >
Manager
-boss: Manager managers
—account: String company_car_license_plate
—-companyCarLicensePlate: String
H account

salespersons

I Salesperson |

(a)

(b)

Fig. 4. The class hierarchy of the superclass Employee (a) and the ER model of the
respective database layout (b).

a counterpart in a relational database, i.e. the database schema defines the tables
employees, managers and a column for every field in the classes. We have two
options to map the class hierarchy to the database schema: in one table or
multiple tables. We map the class hierarchy to multiple tables. In that approach,
class hierarchies are emulated by foreign key references between the tables in the
database, e.g., a tuple of the table managers has a foreign key reference to the key
of the table employees because class Manager is a subclass of class Employee (cf.
Fig. 4).

Hibernate! maps classes and their fields onto their counterparts in the rela-
tional schema. This connection is called object-relational mapping (ORM). To
connect Java classes with the respective tables in the database schema, we use
Java annotations.? Listing 1 shows an excerpt of the ORM of class Employee.
HRManager uses the @Entity annotation (Line 1) to make Hibernate map
the class Employee onto the database. In Line 2, we specify the table name
employees for the class Employee with the @Table annotation. Without using
the @Table annotation, Hibernate maps the class Employee to an equally named
table Employee (case-insensitive).

Like classes on tables, Hibernate maps class attributes to the respective table
columns. By default Hibernate uses the setter and getter methods setName and
getName to map the respective class attribute onto the column name (cf. Listing

! http://www.hibernate.org
2 Another option is to define the mapping in an XML file.

0~ O O W N

B~ W N =

Listing 1. Excerpt of the ORM of the class Employee.

@Entity

@Table (name="employees")

public class Employee implements Serializable {
/* snip further attributes */
private String name;

/* snip further methods */
public void setName(String name) {
this.name = name;

}

public String getName() {
return name;

}

Listing 2. Application of the @Column annotation.

@Column(name = "employee_name")
public String getName() {
return name;

}

1) [18, p. 73]. With the @Column annotation we can override the default behavior.
Listing 2 shows how we map the getter and setter methods of name onto the
column employee_name.

In HRManager, we use the scripting-facilities of the functional programming
language Clojure® to compute the overall salary of employees and to find employ-
ees with certain attributes. Using Clojure, we can modify parts of the application
logic without recompiling the application. Clojure allows us to access methods
defined in Java from Clojure and vice versa. In Java, we build references to
Clojure functions by method var of class RT [38, p. 149-150]. Listing 3 shows in
Line 1 how the Clojure function sumSalary defined in the namespace scripting
is referenced from Java code.

3.1 Applying Refactorings on HRManager

In the following, we report on effects we observed when we applied a number of
refactorings on HRManager. We applied all refactorings manually and evaluate
whether the refactoring can be automated. We call a refactoring on HRManager
successful, if a set of refactorings exists, that preserves the semantics of HRMan-

3 http://clojure.org

Listing 3. Referencing the Clojure function sumSalary from the Java source code.

Var sumSalary = RT.var("scripting", "sumSalary");
float sum = (Float)sumSalary.invoke (managers);

ager. By semantic we refer to the specification of HRManager®. The specification
describes the desired behavior of HRManager regardless of document types. That
is, we are able to evaluate the correct behavior of HRManager after applying an
MLR for all document types existing in HRManager.

For the database, we distinguish two terms of semantic preservation that
describe if a database refactoring can be undone: reversible and symmetrically
reversible [14]. A transformation of a database schema and the related data in-
stances is semantic-preserving, if the transformation is reversible [14]. That is,
for transformation T'1 a transformation 72 exists, that undoes T'1. A transfor-
mation of a database schema and the related data instances is symmetrically
reversible, if for T'1 a transformation 72 exists, so that T2 is the inverse trans-
formation of T'1 and vice versa [14]. Hence, we can undo symmetrically reversible
transformation without loosing any data.

Rename Method Refactoring is used when the name of a method does
not describe the purpose of the method correctly [10, p. 273]. In HRManager,
class Employee and its method getSalary are defined but the method’s name
getSalary does not describe the purpose of the method. The method getSalary
returns the monthly salary, so we rename the method to getMonthlySalary. We
must perform the following actions to preserve the semantics of HRManager:

1. rename getSalary to getMonthlySalary
2. rename setSalary to setMonthlySalary
3. restore the ORM by choosing one of the following alternatives
(a) rename column salary in table employees to monthlysalary
(b) add @Column annotation to the method getSalary
i. set the name attribute of the @Column annotation to the column name
salary.

By default, Hibernate maps getter/setter pairs defined in the Java class on
columns defined in the database schema, so we need to apply the 2nd step
to restore the Hibernate mapping.

We made two interesting observations when we performed this refactoring.
First, we had to refactor a document twice, that is we rename the methods
getSalary of the class Employee and setSalary of the same class (see Steps 1
and 2). Second, in Step 3 we have the choice between two actions for restoring
the ORM. If we choose the first action (Step 3a) we have to rename the column

4 As HRManager is a simple software application, we refer to the unmodified HRMan-
ager source code as specification.

=W N =

Listing 4. Utilizing the @Column annotation for restoring the ORM.

@Column(name = "salary")
public float getMonthlySalary() {
return salary;

}

and we must change an unknown amount of SQL statements referring to that
column. The second action (Step 3b) includes two modifications. Listing 4 shows
the @Column annotation in Line 1. We use the attribute name of the annotation
to restore the ORM to the column salary of the database table employees.

In comparison, the modifications described in Step 3a and Step 3b differ
in their complexity. Step 3b saves us the modification of SQL statements at
all. Furthermore, by saving the modification of SQL we also prevent the clash
with keywords. For instance, if we rename a method to getTable, we have to
rename the database column to table too. But in SQL TABLE is a reserved key-
word, hence, we cannot rename the database column to table without provoking
database errors and thus we would have to abort the MLR.

Pull Up Method Refactoring unifies one or more methods in a superclass,
whereas the method is or can be used in the same manner in different sub-
classes [10, p. 322]. In HRManager, only the class Manager provides methods
getBoss and setBoss to manage the supervisor of a manager. But also employ-
ees have a supervisor, though, the class Employee does not provide any methods
to manage supervisors. Hence, we want to pull up the methods getBoss and
setBoss from Manager to Employee. The following modifications are necessary
to preserve the semantics of HRManager:

pull-up method getBoss from Manager to Employee

pull-up field boss from Manager to Employee

pull-up method setBoss from Manager to Employee

move column boss from table managers and all related data instances to
table employees

5. update all references to column boss of table managers to reference column
boss in table employees

= 0 o=

Step 2 is necessary, because getBoss in Employee cannot access the field of its
subclass Manager. By default, Hibernate maps pairs of getter/setter methods
defined in a Java class on columns defined in the database schema, so we need
to apply the 3rd step to restore the getter/setter pair getBoss/setBoss inside
class Employee.

The transformation of the database schema informally described by the
Steps 4 and 5 is reversible, because we can move the column boss from employee
back to managers without loosing any of the original information in column

Listing 5. Establishing a supervisor relationship between the manager Greenspan and
the supervisor Gartner.

UPDATE managers
SET boss = (SELECT id FROM employees WHERE surname = ’Gartner’)
WHERE (SELECT id FROM employees
WHERE employees.surname = ’Greenspan’
AND employees.id = managers.id);

Listing 6. Establishing a supervisor relationship between the manager Greenspan and
the supervisor Gartner after the Pull Up Method refactoring is applied.

UPDATE employees
SET boss = (SELECT id FROM employees
WHERE surname = ’Gartner’)
WHERE employees.surname = ’Greenspan’;

boss. Therefore, we call the Pull Up Method refactoring an MLR in HRMan-
ager. However, the transformation is not symmetrically reversible, because with
removing the column boss from table employees (required when inverting the
refactoring) tuples of pure employees loose the relation to a boss. That is, we
cannot guarantee the informational integrity of each tuple in employees when
undoing the Pull Up Method refactoring. Hence, we may not be able to revert
the Pull Up Method refactoring without loosing information.

The modification of other SQL statements referencing the column boss can
be challenging as Listings 5 and 6 show.? In Listing 5, the UPDATE statement in-
troduces a subordinate-boss-relation between the datasets of Gartner (boss) and
Greenspan (subordinate). One way to adapt the UPDATE statement in Listing 5
to the new database schema is to swap the table referenced in Line 1 (managers)
and the table referenced in the FROM clause of the SELECT statement in Line 3
(employees). Listing 6 shows an additional modification. We can simplify the
WHERE statement in Listing 5, Line 3 by changing the SELECT statement to a
comparison (Listing 6, Line 3). Therefore, there exist at least 2 possible modifi-
cations of the UPDATE statement in Listing 5 that differ in the amount of changes
to apply and may also differ in their performance (assuming that the comparison
provides a better performance than the nested SELECT statement). Furthermore,
we argue that the transformations described can only be accomplished by se-
mantic analysis of the source statement (e.g. Listing 5). In our opinion, only by
the structure of SQL we cannot fathom how to change UPDATE statements like
the one in Listing 5 in general.

5 The SQL statements are defined with the SQL systax of the database SQLite
(http://www.sqlite.org).

Move Class Refactoring changes the superclass of a class to allow reuse of
the class’s functionality [31]. The new superclass can be part of the current class
hierarchy or be part of a different one. We examine moving a class within a class
hierarchy.

In HRManager, the class Salesperson extends the class Manager, because
managers and salespersons share the attribute company car (see Figure 4). But
in reality, salespersons are no managers, hence, we want to change the superclass
of Salesperson to Employee. Therefore, we apply the Move Class refactoring
as follows:

1. copy the fields account, companyCarLicensePlate and their respective get-
ter and setter methods from class Manager to class Salesperson

2. change the superclass of Salesperson to Employee

3. copy the columns account and company_car_license_plate from the table
managers to the table salespersons

4. in the table definition of salespersons change every foreign key relation
from table managers to table employees

5. change SQL statements accessing datasets in the table managers, if the
datasets belong to salespersons

The database transformation described by the Steps 3 to 5 are reversible, because
we can undo the changes described without loosing any data of the original ta-
ble salespersons. Furthermore, the transformation is symmetrically reversible,
because datasets in the tables salespersons and managers are unambiguously
identifiable by the id in table employees. That is, we can undo the changes of the
Move Class refactoring without violating the data integrity. Thus, these steps can
be considered a database refactoring. However, because Salesperson is not a
Manager anymore, code that assumes semantically all instances of Salesperson
being part of the set of Manager instances is broken. Therefore, we can only call
the Move Class refactoring an MLR when there is no code assuming salespersons
to be a subset of managers. We cannot detect this automatically.

Introduce Default Value Refactoring introduces a default value for a table
column [1]. We use the Introduce Default Value refactoring to unify already ex-
isting default values (in the database itself or in applications using the database)
by introducing a single default value for a column in a database table [1].

In HRManager, we want to set the default value to Akquise for the Column
account defined in the table managers, because a manager has to report to the
account Akquise, by default. We have to modify HRManager in the following
way to introduce the default value Akquise:

1. define the default value Akquise for the column account in the table
managers by using the keyword DEFAULT
2. initialize the field account of the class Manager with the value Akquise

Step 2 is necessary to preserve the semantics of the default value defined in
the database for classes defined in Java. Consider, we would not have applied

STk W N~

10

Listing 7. Method definition setAccount.

public void setAccount(String account) {
int len = account.length();

this.accountName = account.substring(0, len - 3));
this.accountID = Integer.parse(account.substring(len - 3, len));

Step 2. When we create a new instance of the class Manager the field account
is initialized with null. When we store the instance of the class Manager in
the database, null is written to the column account. The default value of the
column account is never applied to the instances of class Manager.

The modification described in Step 2 can be semantic-changing, because there
can be methods assuming the field account being initialized with null instead
of being set to null after initialization. Those methods would behave differently
after the refactoring. In Step 2, setting the initial value requires semantic anal-
ysis of the getter/setter methods of the field account. The semantic analysis
can hardly be automated. By default, Hibernate maps the methods getAccount
and setAccount onto the column account. But Hibernate does not know the
fields modified by the methods getAccount and setAccount. Thus, only the
implementation of the methods getAccount and setAccount can provide the
information which field we have to initialize. The analysis of the implementa-
tion of getter/setter methods is not hard for trivial implementations, but needs
advanced treatment for non-trivial getter/setter methods. In Figure 7, we de-
fined a non-trivial example for the setter method setAccount. In the method
setAccount, we parse a parameter of type String and store the parsed values
in two different fields accountName (Line 4) and accountID (Line 5). Without
semantic analysis of setAccount we would not know how to apply a default
value defined in the database on the fields accountName and accountID. Hence,
by the semantic analysis the refactoring becomes more complex.

During the application of the Introduce Default Value refactoring we have
identified two problems of refactorings in a multi-language software application.
First, we cannot guarantee that the Introduce Default Value refactoring preserves
the semantics of HRManager (dealing with null values). Furthermore, we need
to analyze the semantics of getter/setter methods to set the initializing value for
fields correctly.

Introduce Redundant Column Refactoring creates a copy of a column
of a source table in a target table, if the column of the source table is queried
frequently when a dataset of the target table is queried [1, p. 409]. In Figure 5, the
tables employees and departments are related. Each time we query a dataset
from the table employees we also query the name of the department referenced
by the queried dataset. By creating a copy of the column name in table employees

11

L= TTTTTE S ~
: department name)
B
[0,1] [0,*]
employees departments

Fig.5. Extended ER schema showing the entities employees and departments,
whereas attribute department name of employees is derived from attribute name of
departments.

no joins remain necessary to retrieve the department an employee is working for.
The decrease of join operations may result in a performance gain for certain SQL
queries. The following steps are necessary for the Introduce Redundant Column
refactoring:

1. create a copy of the column name in the table employees with the name
department_name

2. copy all entries from column name to the column department name

3. create database triggers to preserve the data consistency between the
columns name and department_name

Additionally, we have to apply the following modifications to make the perfor-
mance gain available in Java:

4. add a field department_name with getters and setters to the class Employee
as required by Hibernate

5. extend the functionality of the classes Employee and Department to maintain
the consistency between the field department name and name

The Steps 4 and 5 are not necessary to preserve the functionality of HRManager.
But, if we do not execute Steps 4 and 5 we cannot profit from the performance
gain available through the database schema.

The modifications described in Steps 1-3 conform to the steps in the refac-
toring definition and are semantic preserving [1, p. 409]. Hence, we can call the
modifications of Steps 1-3 an MLR.

The extension of functionality described in Step 5 violates the defini-
tion of refactorings. The extension of functionality includes securing field
department name in class Employee against unauthorized writes (only Hiber-
nate and the referenced instance of type Department may write the field) and
the implementation of the Observer Pattern [11, p. 293] to preserve the consis-
tency between the department name in instances of Employee and Department.
Thus, the modifications described in the Steps 1 to 5 do not adhere to the
definition of MLR, because Step 5 does not describe a refactoring. Only the
modifications in the Steps 1-3 preserve the semantics of HRManager. Thus, we
found two alternate ways to apply the Introduce Redundant Column refactoring
on HRManager.

STk W N~

12

Listing 8. Definition of the function sumSalary.

(def sumSalary (fn [x]
(if (and (not (empty? x))
(not (instance? hrm.Employee (first x))))
(throw (new java.lang.IllegalArgumentException))
(if (empty? x) 0 (+ (. (first x) getSalary)
(sumSalary (rest x)))))))

Remove Table Refactoring removes a table from a database schema, if the
table is deprecated or not used [1].

In HRManager, the table external _staff stores information about staff
employed through external contractors. Because the Table external staff is
not used anymore, we want to remove the table from HRManager. We have to
modify the HRManager in the following way:

1. remove the SQL definition of the table external staff
2. remove class ExternalStaff from the mapping file of Hibernate
3. ensure that class ExternalStaff is not used in conjunction with the ORM

The mapping file modified in step 2 is specific to Hibernate. Thus, the step may
be obsolete or different to other ORM frameworks in general.

As long as the class ExternalStaff is not used in HRManager no problems
arise while we apply the Remove Table refactoring. If ExternalStaff is still in
use, we have to abort the Remove Unreferenced Class refactoring (Step 3) and
undo modifications already applied to HRManager (Step 1).

Introduce New Definition Refactoring defines a local definition for an
unnamed expression [24].

In HRManager, we defined the Clojure function sumSalary which computes
the total salary of all instances of the class Employee in x. Listing 8 shows
the definition of function sumSalary. In Line 3, with the unnamed expression (
instance? hrm.Employee (first x)) we test if the first element of list x is an
instance of the class Employee (in the following we call this expression instance
expression).

We want to apply the Introduce New Definition Refactoring in order to create
a function isEmployee? out of the instance expression. Therefore, we need to
apply the following modifications to HRManager:

1. enclose the instance expression with a letfn statement

2. define the Function isEmployee? with the instance expression as body
within the letfn statement defined in step 1

3. within the body of the letfn statement, replace the instance expression by
a call to the new function isEmployee?

0~ O O W+

13

Listing 9. The function sumSalary with the additional let (Line 3) statement defining
the function isEmployee?.

(def sumSalary (fn [x]
(if (and (not (empty? x))
(not (letfn [(isEmployee? [x]
(instance? hrm.Employee x))]
(isEmployee? (first x)))))
(throw (new java.lang.IllegalArgumentException))
(if (empty? x) 0 (+ (. (first x) getSalary)
(sumSalary (rest x))))))))

With the letfn statement introduced in Step 1 we can define named expressions.
The named expression defined with letfn is visible within the body of the
letfn statement. Listing 9 shows the refactoring result, i.e., the definition of
the function isEmployee? in Line 3 and the body of the function isEmployee?
in Line 4. We can use the function isEmployee? within the body of the letfn
statement as shown in Line 5.

After the Introduce New Definition refactoring we do not apply further mod-
ifications on the Java artifacts because the instance expression itself was missing
a name which could be referenced by Java or other documents. Hence, since
there are no other effects, we can call the Introduce New Definition refactoring
an MLR.

Promote Definition Refactoring increases the scope or visibility of a defi-
nition, so the definition can be used by other functions [24].

In HRManager, we defined the function isEmployee? with a letfn state-
ment, as shown in Listing 9, Line 3 and 4. That is, the function isEmployee?
is only visible within the scope of the letfn statement (Line 5). We want to
increase the visibility of isEmployee?, such that we can reuse isEmployee? in
other functions, too. To promote the definition isEmployee? into a new, glob-
ally visible function isEmployee? we need to apply the following modification
to HRManager:

1. introduce the new function definition isEmployee? in the global scope

2. let the body of the letfn statement be the new body of the Function
isEmployee? introduced in step 1

3. remove the letfn statement from the Function sumSalary

The Listing 9, Line 1, shows the function isExternalStaff? introduced by the
Promote Definition refactoring. The letfn statement is removed, only the body
is preserved (Listing 10, Line 5).

Because the function isEmployee? was not visible before the Promote Def-
inition refactoring, there are no Java documents which reference the function
isEmployee?. Thus, we do not need to apply further modifications to Java code,
so we call the Promote Definition refactoring an MLR.

0 O Tk Wi

14

Listing 10. The function sumSalary with the globally visible definition of
isEmployee?.

(def isEmployee? (fn [x] (instance? hrm.Employee x)))

(def sumSalary (fn [x]
(if (and (not (empty? x))
(not (isEmployee? (first x))))
(throw (new java.lang.IllegalArgumentException))
(if (empty? x) O (+ (. (first x) getSalary)
(sumSalary (rest x))))))))

Listing 11. An excerpt of the reference to the function managersWithBoss in Java
after the application of the Move Definition refactoring.

RT.var("management", "managersWithBoss");

Move Definition Refactoring describes how functions can be moved between
different namespaces [24]. Clojure provides namespaces to group functions [38,
p. 24].

In HRManager, the function managersWithBoss is defined in the namespace
salary. The namespace salary defines functions for the computation of salaries.
The function managersWithBoss computes employees who have a supervisor.
Thus, the function managersWithBoss is not related to the namespace salary,
we want to move the function to the namespace management. We need to perform
the following modifications to change the namespace:

1. copy function managersWithBoss to namespace management and remove the
function from the namespace salary
2. modify calls to managersWithBoss from Java documents

Listing 11 shows how calls to managersWithBoss must look like in the Java
source code after performing Step 2.

In Java, we resolve dependencies to missing classes by using Java’s import
statement. For functions defined in Clojure we have to use the Java class RT and
the method var, respectively. Hence, we use the Clojure-specific Java class RT to
reference functions defined in Clojure instead of import statements. With this,
we have to take language-specific functions into account for MLRs.

4 Evaluation of MLRs

We implemented an MLR version of the Rename Method and the Push Down
Method refactorings for programs written in Java, Hibernate, and SQL.S The

5 Currently sophisticated tools for the modification of Clojure source code are missing.
Therefore, we have not automated any refactorings for Clojure.

15

employees companyCarLicensePlate

Fig. 6. Representation of the class hierarchy shown in Figure 4 by a single entity.

Push Down Method refactoring removes a method definition from a superclass
and copies the method definition to all subclasses.

We evaluated the refactorings on applications which use the Rich Internet
Framework JBoss Seam.” We applied the refactorings on a Seam project cre-
ated by the Rapid Application Development (RAD) tool Seam-gen and on the
demonstration projects Seam Space and DVD Store delivered with Seam. All
classes that have been refactored are part of an ORM with hibernate, so there
are always at least two document types involved, documents of Java and of
Hibernate.

In HRManager, each class instance of a class hierarchy is stored in a separate
table in the database (see Figure 4(b)). In contrast, in Seam Space, DVD Store,
and the generated Seam-gen project, classes of a class hierarchy are stored in a
single table. Figure 6 visualizes the single table approach for the class hierarchy
in Figure 4(a).

Generated Seam project First, we refactored the Seam project generated by
the RAD tool Seam-gen. With Seam-gen, we also added basic user manage-
ment functionality to our Seam project which adds additional classes. Then,
the project consists of 54 different files of 5 different file types with 3266 lines of
code (LOC) altogether. Thereof, 6 lines of SQL source code and 257 lines of Java
source code.® Because the additional classes are not part of a class hierarchy, we
could not apply the Method Push Down refactoring. The Seam project and the
user management is usable right after the generation, so we are able to evaluate
the correctness of our refactoring implementation. One of the classes added by
Seam-gen is UserRole. In UserRole, the method getName is defined which we
renamed to getRoleName automatically with our tool. After the refactoring, the
generated project is as usable as before. The preservation of the getter/setter
pair getName and setName as well as the preservation of the correct reference to
the column name in the database is done automatically by the implementation
of the Rename Method refactoring. We do not have to apply additional mod-
ifications because of the Seam-specific @RoleName annotation which labels the
original method getName. O@RoleName labels the method that returns the role
name of instances of UserRole. Due to the @RoleName annotation, we cannot
break references to the original method getName. Hence, our MLR implementa-
tion may only work without further modifications if the tool-specific @RoleName

" http://seamframework.org
8 All measurements of LOC were taken with cloc (http://cloc.sourceforge.net).

16

Listing 12. The original and refactored HQL statement in the DVD Store demonstra-
tion project.

-- original statement
select sum(i.quantity) from Inventory i

-- refactored statement
select sum(i.numberOfProducts) from Inventory i

annotation is used. Therefore, we have to consider the effect of the tool-specific
©@RoleName annotation when applying the Rename Method refactoring on the
the generated Seam project.

DVD Store The demonstration project DVD Store is an online DVD store im-
plementation. The project consists of 73 different files of 6 different file types
with 6886 lines of code (LOC) altogether. Thereof, 3794 lines of SQL source
code and 1828 lines of Java source code. In DVD Store, an instance of the
class Inventory stores the amount of dvds available for a certain movie. In
Inventory, the method getQuantity is defined. The method getQuantity re-
turns the amount of dvds possessed by the dvd store. We renamed the method
getQuantity to getNumberOfProducts. Besides the automatic modifications,
we had to modify a HQL® statement manually. This modification is semantic
preserving because we renamed a method reference [35]. Listing 12 shows both,
the original and the refactored HQL statement querying the amount of all dvds
in the database.

We applied the Push Down Method refactoring to DVD Store. In the class
User the method getFirstName is defined. In DVD Store, the method getFirst-
Name is only used in conjunction with the subclass Customer. Therefore, we want
to push down the method getFirstName from the class User into the subclasses
Customer and Admin (Figure 7 shows the class hierarchy of User). After the push
no further modifications are necessary for several reasons. First, no modification
of the database is necessary because the entire class hierarchy is represented
by a single table and, therefore, we do not need to move the column firstname
between tables. Second, the getter/setter pair getFirstName and setFirstName
is preserved by the refactoring implementation through renaming the setter when
the getter has changed and vice versa. At last, in all documents the method
getFirstName is called only on instances of the static type Customer, so we do
not have to change the static type of these instances by casts.

Seam Space The Seam Space project implements a rudimentary social network.
The project consists of 53 different files of 6 different file types with 7899 lines
of code (LOC) altogether. Thereof, 36 lines of SQL source code and 1956 lines

9 The Hibernate Query Language (HQL) allows us to query objects instead of relations
from a database.

w

17

User

/\

| Customer | | Admin |

Fig. 7. The class hierarchy of User in the Seam DVD project.

Listing 13. The original and refactored JSF EL statement in the Seam Space demon-
stration project.

/* original statement */
register.member.dob

/* refactored statement */
register.member.date0fBirth

of Java source code. The information about the users of Seam Space is stored in
instances of the class Member, which in turn are stored in the database. The class
Member defines the method setDob. Because the purpose of setDob is not obvious
on the first sight, we renamed setDob to setDate0fBirth. The preservation of
the getter/setter pair setDob and getDob as well as the preservation of the
correct reference to the column dob in the database is done automatically by
our tool. Besides the automatic modifications, we had to modify JSF Expression
Language (EL)'° statements in the unit test testRegister defined in the class
RegisterTest and in register.xhtml. The modifications of the EL statements
are semantic-preserving because we changed the method reference accordingly to
the renamed methods getDate0fBirth and setDateOfBirth. Listing 13 shows
both, the original and the refactored JSF EL statement calling the method
getDateOfBirth.

Table 1 summarizes the evaluation results. Within Table 1 we distinguish
fully automatic refactorings (only A checked) and refactorings where we made
manual adjustments during refactoring (A4 and M checked). The table also labels
refactorings we have not applied.

5 Related Work

In the following we present different approaches to MLR. We argue, that all the
different approaches consider language features which exist in all of the different
documents or document types. To give an example, consider the Rename Method
refactoring. We can apply the Rename Method refactoring to source code of

19 With the JSF Expression Language we can access fields of managed beans [3]. As a
simplification, with JSF EL we can call Java methods from within (X)HTML.

18

Refactorings
RENAME METHODL PusH DownN

[Applicat ion [A I M I A I M J

Seam-gen X n.a.
DVD Store X X x]
Seam Space X X n.a.

(A) automatic; (M) manual modification; (n.a.) not applied

Table 1. Results of the evaluation of multi-language refactorings.

object-oriented programming languages. Furthermore, we can apply the Rename
Method to JSF documents because these documents also have a notion of method
calls [4]. Therefore, they do not have to discuss effects as presented in our paper.

The main idea of all approaches presented in the following for describing
MLRs is to find commonalities between all considered document types. This idea
appears for instance in the term Generic Refactoring [21]. Generic refactorings
modify language features that all programming languages share. For instance, we
can describe the Rename Method refactoring as a Generic Refactoring because
most modern programming languages share the notion of functions or methods
to define behavior of programs. Generic refactorings only consider documents of
programming languages [21]. Furthermore, the application of generic refactorings
is limited to features shared by all programming languages.

An approach to describe a refactoring in an abstract way is to use meta
models of source code. The meta models FAMIX and MOOSE are used for
describing refactorings of object-oriented programming languages independently
from the OOP language at hand [7,27,28,36,27]. Therefore, FAMIX as well as
MOOSE cannot be used to abstract the diverse documents of a multi-language
software application. Another meta model based approach is used in the IDE
X-Develop [33]. X-Develop realizes MLR on top of a Common Meta-Model. X-
Develop uses Front-Ends to transform source code of different programming
and special purpose languages, e.g. C#, Java, and ASP, to the common meta-
model. The authors evaluate the Rename Method refactoring implemented in
X-Develop on a project that utilizes C#, J#, Visual Basic, and the Common
Intermediate Language (CIL). C#, J#, and Visual Basic are object-oriented
programming languages, moreover, all three languages can be compiled to CIL
code. Obviously, C#, J#, and Visual Basic share common properties and are
already related from beginning, and, therefore, belong to the same document
type. Refactorings of other artifact types are not considered by the authors.

Refactoring Unified Modeling Language (UML) models is another approach
to MLR in two respects. First, UML provides a set of diagrams to describe
the different aspects of a software application. If we refactor an instance of one
diagram, we have to modify instances of other diagrams accordingly [34]. But
there exist known limitations of the UML meta-model, e.g. missing relations
between different models or missing specification, that prevent the application

19

of certain refactorings [34]. Second, UML class diagrams are used to describe and
create classes for a software application. By refactoring a UML class diagram we
may want to refactor the created classes accordingly [37]. In [37], the authors
focus on the interaction of UML with documents of object-oriented programming
languages and the application of object-oriented refactorings. Refactorings of
different documents or artifact types are not considered or discussed.

Some authors analyze and implement renaming for different artifact types [4,
19, 35]. We analyzed and implemented refactorings beyond renaming.

Coupled Software Transformations or Co-transformations are modifications
of different interacting document types [22,5]. Co-transformations describe
semantic-preserving as well as semantic-changing modifications [22]. Based on
our findings we argue that a general application of semantic-changing modifi-
cations is irreconcilable with the term refactoring. But co-transformations ex-
ists for semantic-preserving database schema transformations and the associated
program transformations [6, p. 231 ff.]. These co-transformations are driven by
database schema transformations [5][6, p. 237]. Database schema transformations
driven by application transformations as shown in this paper are not discussed.
Moreover, not all possible semantic-preserving transformations are considered [6,
p. 242]. Therefore, problems as presented in this paper are not discussed or even
discovered.

6 Summary

We applied several object-oriented, database, and functional refactorings on an
example application implemented by means of different general-purpose and
domain-specific programming languages. When we applied the refactorings, we
observed the following:

1. A refactoring of one artifact can lead to semantic-changing modifications in
other artifacts.

2. Tool-specific documents must be considered, whose structure cannot be gen-
eralized.

3. There can be alternative approaches to realize a refactoring on different
document types. These modification can differ substantially in the amount
of modifications or differ in whether they preserve program-semantics or not.

Hence, we argue that a general approach to automatic multi-language refactor-
ings (MLR) covering all possible multi-language software applications cannot
exist.

We automated the Rename Method and the Push Down Method refactoring
for programs written in Java, Hibernate, and SQL to some extend. We evaluated
the implementation on different case studies. The implemented refactorings do
not realize a general approach to MLR but cover documents of a number of
general-purpose and special-purpose programming languages.

In our case studies, we have also shown that an MLR of one software appli-
cation is not semantic-preserving on another software application.

20

7

Future Work

So we argue that there is no general approach to MLR, we and others show that
certain refactorings perform an MLR [4, 19, 35]. The next step is to find more
combinations of refactorings performing an MLR and to specify the conditions
under which the successful application of identified MLR is possible. Then, com-
monalities between specifications of different MLRs must be identified. These
commonalities may help to decrease the effort for implementing MLR further.

Acknowledgments

The authors like to thank Gunter Saake for his comments on earlier drafts of
this paper.

References

11.

12.

13.

14.

Ambler, S.: Agile Database Techniques: Effective Strategies for the Agile Software
Developer. John Wiley & Sons, Inc., New York, NY, USA (2003)

. Andersen, L.: JDBC ™ 4.0 Specification. Sun Microsystems, Inc., Santa Clara,

USA, final edn. (2006)

Bergsten, H.: JavaServer Faces. O’Reilly & Associates, Inc., Sebastopol, CA, USA
(2004)

Chen, N., Johnson, R.: Toward Refactoring in a Polyglot World: Extending Auto-
mated Refactoring Support across Java and XML. Workshop on Refactoring Tools
pp. 1-4 (2008)

Cleve, A., Henrard, J., Hainaut, J.: Co-transformations in Information System
Reengineering. Electronic Notes in Theoretical Computer Science 137(3), 5-15
(2005)

Cleve, A.: Program Analysis and Transformation for Data-Intensive System Evo-
lution. Ph.D. thesis, University of Namur (2009)

Ducasse, S., Lanza, M., Tichelaar, S.: MOOSE: An Extensible Language-
Independent Environment for Reengineering Object-Oriented Systems. Interna-
tional Symposium on Constructing Software Engineering Tools pp. 24-30 (2000)
Fjeldberg, H.C.: Polyglot Programming. Master thesis, Norwegian University of
Science and Technology, Trondheim/Norway (2008)

Ford, N.: The Productive Programmer. O’Reilly (2008)

. Fowler, M.: Refactoring: Improving the Design of existing Code. Addison-Wesley

Longman Publishing Co., Inc., Boston, MA, USA (1999)

Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design patterns: Abstraction and
reuse of object-oriented design. Springer, London (1993)

Grechanik, M., Batory, D., Perry, D.: Design of Large-Scale Polylingual Sys-
tems. International Conference on Software Engineering, Edinburgh, Scotland, UK
(2004)

Grogan, M.: JSR-223 Scripting for the Java ™ Platform. Sun Microsystems, Inc.,
Santa Clara, USA, final edn. (2006)

Hainaut, J.L.: Specification Preservation in Schema Transformations — Application
to Semantics and Statistics. Data & Knowledge Engineering 19, 99-134 (1996)

15.

16.

17.

18.

19.

20.

21.

22.

23.
24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

21

Harold, E.R., Means, W.S.: XML in a nutshell. O’Reilly & Associates, Inc., Se-
bastopol, CA, USA (2002)

ISO/IEC: International Standard ISO/IEC 9075-1 Information technology —
Database languages — SQL — Part 1: Framework (SQL/Framework). ISO/IEC,
third edn. (2008)

Jones, T.C.: Estimating software costs. McGraw-Hill, Inc., Hightstown, NJ, USA
(1998)

Keith, M., Schincariol, M.: Pro EJB 3: Java Persistence API (Pro). Apress, Berkely,
CA, USA (2006)

Kempf, M., Kleeb, R., Klenk, M., Sommerlad, P.: Cross Language Refactoring for
Eclipse plug-ins. Companion to the Annual ACM SIGPLAN Conference on Object-
Oriented Programming, Systems, Languages, and Applications pp. 1-4 (2008)
Kullbach, B., Winter, A., Dahm, P., Ebert, J.: Program Comprehension in Multi-
Language Systems. Working Conference on Reverse Engineering pp. 135-143
(1998)

Lammel, R.: Towards Generic Refactoring. ACM SIGPLAN Workshop on Rule-
based Programming pp. 15-28 (Oct 2002)

Lammel, R.: Coupled Software Transformations. Workshop on Software Evolution
Transformations pp. 31-35 (2004)

Leyderman, R.: Oracle ® C ++ Call Interface. Oracle Corporation (2005)

Li, H.: Refactoring Haskell Programs. Ph.D. thesis, University of Kent, Canterbury,
Kent, UK (2006)

Liang, S.: The Java Native Interface: Programmer’s Guide and Specification.
Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA (1999)

Linos, P.K., Lucas, W., Myers, S., Maier, E.: A Metrics Tool for Multi-Language
Software. International Conference on Software Engineering and Applications pp.
324-329 (2007)

Lépez, C., Marticorena, R., Crespo, Y., Pérez, F.: Towards a Language Indepen-
dent Refactoring Framework. International Conference on Software and Data Tech-
nologies pp. 165-170 (2006)

Marticorena, R.: Analysis and Definition of a Language Independent Refactor-
ing Catalog. Conference on Advanced Information Systems Engineering. Doctoral
Consortium pp. 8-16 (2005)

Mens, T., Tourwé, T.: A survey of software refactoring. IEEE Transactions on
software engineering 30(2), 126-139 (2004)

Michels, J.E., Kulkarni, K., Farrar, M.C., Eisenberg, A., Mattos, N., Darwen, H.:
The SQL Standard. it — Information Technology 45(1), 30-38 (2003)

Opdyke, W.: Refactoring Object-Oriented Frameworks. Ph.D. thesis, University of
Illinois at Urbana-Champaign (1992)

Schrijvers, T., Serebrenik, A., Demoen, B.: Refactoring Prolog Code. Workshop on
(Constraint) Logic Programming pp. 115-126 (2004)

Strein, D., Kratz, H., Lowe, W.: Cross-Language Program Analysis and Refactor-
ing. IEEE International Workshop on Source Code Analysis and Manipulation pp.
207-216 (Sep 2006)

Sunyé, G., Pollet, D., Traon, Y.L., Jézéquel, J.: Refactoring UML Models. UML
2001 - The Unified Modeling Language, Modeling Languages, Concepts, and Tools
pp. 134-148 (2001)

Tatlock, Z., Tucker, C., Shuffelton, D., Jhala, R., Lerner, S.: Refactoring UML
Models. Annual ACM SIGPLAN Conference on Object-Oriented Programming,
Systems, Languages, and Applications pp. 37-52 (Oct 2008)

22

36.

37.

38.

Tichelaar, S.: Modeling Object-Oriented Software for Reverse Engineering and
Refactoring. Ph.D. thesis, University of Berne, Switzerland (2001)

Van Gorp, P., Stenten, H., Mens, T., Demeyer, S.: Towards Automating Source-
Consistent UML Refactorings. UML 2003 - The Unified Modeling Language, Mod-
eling Languages, Concepts, and Tools pp. 144-158 (2003)

VanderHart, L.: Practical Clojure. Apress (2010)

